cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173493 Number of distinct squares that can be partitioned into distinct divisors of n.

This page as a plain text file.
%I A173493 #16 Apr 16 2025 04:36:08
%S A173493 1,1,2,2,1,3,1,3,3,2,1,5,1,3,4,5,1,6,1,6,3,3,1,7,2,2,4,7,1,8,1,7,3,2,
%T A173493 2,9,1,1,3,9,1,9,1,7,7,3,1,11,2,5,2,4,1,10,2,10,2,1,1,12,1,2,7,11,1,
%U A173493 12,1,4,2,11,1,13,1,1,9,7,1,12,1,13,6,1,1,14,1,1,2,13,1,15,1,6,2,3,3,15,1,8
%N A173493 Number of distinct squares that can be partitioned into distinct divisors of n.
%C A173493 The partitions of the squares are generally not unique, see examples.
%H A173493 Amiram Eldar, <a href="/A173493/b173493.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..250 from Reinhard Zumkeller)
%F A173493 a(n) <= A078705(n).
%F A173493 a(A173494(n)) = 1.
%e A173493 divisors(9) = {1, 3, 9}: a(9) = #{1, 3+1, 9} = 3.
%e A173493 divisors(10) = {1, 2, 5, 10}: a(10) = #{1, 10+5+1} = 2.
%e A173493 divisors(12) = {1,2,3,4,6,12}: a(12) = #{1,4,9,16,25} = 5:
%e A173493   2^2 = 4 = 3 + 1,
%e A173493   3^2 = 6 + 3 = 6 + 2 + 1 = 4 + 3 + 2,
%e A173493   4^2 = 12 + 4 = 12 + 3 + 1 = 6 + 4 + 3 + 2 + 1,
%e A173493   5^2 = 12 + 6 + 4 + 3 = 12 + 6 + 4 + 2 + 1.
%e A173493 divisors(42)={1,2,3,6,7,14,21,42}: a(42)=#{k^2: 1<=k<=9}=9:
%e A173493   2^2 = 3+1,
%e A173493   3^2 = 7+2 = 6+3 = 6+2+1,
%e A173493   4^2 = 14+2 = 7+6+3 = 7+6+2+1,
%e A173493   5^2 = 21 + 3 + 1 = 14 + 7 + 3 + 1 = 14 + 6 + 3 + 2,
%e A173493   6^2 = 21 + 14 + 1 = 21 + 7 + 6 + 2,
%e A173493   7^2 = 42 + 7 = 42 + 6 + 1 = 21 + 14 + 7 + 6 + 1,
%e A173493   8^2 = 42 + 21 + 1 = 42 + 14 + 7 + 1 = 42 + 14 + 6 + 2,
%e A173493   9^2 = 42 + 21 + 14 + 3 + 1 = 42 + 21 + 7 + 6 + 3 + 2.
%t A173493 a[n_] := Module[{d = Divisors[n], sum, sq, x}, sum = Plus @@ d; sq = Range[Floor[Sqrt[sum]]]^2; Count[CoefficientList[Product[1 + x^i, {i, d}], x][[1 + sq]], _?(# > 0&)]]; Array[a, 100] (* _Amiram Eldar_, Apr 16 2025 *)
%Y A173493 Cf. A000203, A006532, A033630, A072243, A078705, A173494.
%K A173493 nonn
%O A173493 1,3
%A A173493 _Reinhard Zumkeller_, Feb 20 2010