This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A173519 #35 Sep 07 2016 11:08:50 %S A173519 1,1,2,7,23,84,331,1367,5812,25331,112804,511045,2348042,10919414, %T A173519 51313463,243332340,1163105227,5598774334,27119990519,132107355553, %U A173519 646793104859,3181256110699,15712610146876,77903855239751,387609232487489,1934788962992123 %N A173519 Number of partitions of n*(n+1)/2 into parts not greater than n. %C A173519 a(n) is also the number of partitions of n^3 into n distinct parts <= n*(n+1). a(3) = 7: [4,11,12], [5,10,12], [6,9,12], [6,10,11], [7,8,12], [7,9,11], [8,9,10]. - _Alois P. Heinz_, Jan 25 2012 %H A173519 Alois P. Heinz and Vaclav Kotesovec, <a href="/A173519/b173519.txt">Table of n, a(n) for n = 0..720</a> (terms 0..200 from Alois P. Heinz) %F A173519 a(n) = A026820(A000217(n),n). %F A173519 a(n) ~ c * d^n / n^2, where d = 5.4008719041181541524660911191042700520294... = A258234, c = 0.6326058791290010900659134913629203727... . - _Vaclav Kotesovec_, Sep 07 2014 %t A173519 Table[Length[IntegerPartitions[n(n + 1)/2, n]], {n, 10}] (* _Alonso del Arte_, Aug 12 2011 *) %t A173519 Table[SeriesCoefficient[Product[1/(1-x^k),{k,1,n}],{x,0,n*(n+1)/2}],{n,0,20}] (* _Vaclav Kotesovec_, May 25 2015 *) %o A173519 (PARI) %o A173519 a(n)= %o A173519 { %o A173519 local(tr=n*(n+1)/2, x='x+O('x^(tr+3)), gf); %o A173519 gf = 1 / prod(k=1,n, 1-x^k); /* g.f. for partitions into parts <=n */ %o A173519 return( polcoeff( truncate(gf), tr ) ); %o A173519 } /* _Joerg Arndt_, Aug 14 2011 */ %Y A173519 Cf. A066655, A097356, A258234. %K A173519 nonn %O A173519 0,3 %A A173519 _Reinhard Zumkeller_, Feb 20 2010 %E A173519 More terms from _D. S. McNeil_, Aug 12 2011