cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173580 Primes where each digit is 0, 1, 2, 4, or 8.

This page as a plain text file.
%I A173580 #30 Jun 12 2025 12:58:52
%S A173580 2,11,41,101,181,211,241,281,401,421,811,821,881,1021,1181,1201,1481,
%T A173580 1801,1811,2011,2081,2111,2141,2221,2281,2411,2441,2801,4001,4021,
%U A173580 4111,4201,4211,4241,4421,4441,4481,4801,8011,8081,8101,8111,8221,8821,10111
%N A173580 Primes where each digit is 0, 1, 2, 4, or 8.
%H A173580 Jason Bard, <a href="/A173580/b173580.txt">Table of n, a(n) for n = 1..10000</a>
%p A173580 with(numtheory): for n from 2 to 10000 do: l:=evalf(floor(ilog10(n))+1): n0:=n:indic:=0:for m from 1 to l do:q:=n0:u:=irem(q,10):v:=iquo(q,10): n0:=v : if u=3 or u= 5 or u= 6 or u=7 or u=9 then indic :=1 :else fi :od :if indic = 0 and type(n,prime) = true then print(n):else fi:od:
%t A173580 Join[{2}, Select[Map[FromDigits, Tuples[{0, 1, 2, 4, 8}, 3]]*10 + 1, PrimeQ]] (* _Paolo Xausa_, Jun 12 2025 *)
%o A173580 (Python)
%o A173580 from sympy import isprime
%o A173580 from itertools import count, islice, product
%o A173580 def agen(): # generator of terms
%o A173580     yield 2
%o A173580     yield from (t for digits in count(2) for f in "1248" for mid in product("01248", repeat=digits-2) if isprime(t:=int(f + "".join(mid) + "1")))
%o A173580 print(list(islice(agen(), 45))) # _Michael S. Branicky_, Jun 11 2025
%Y A173580 See A066593.
%Y A173580 Cf. A066591, A066592.
%K A173580 nonn,base
%O A173580 1,1
%A A173580 _Michel Lagneau_, Feb 22 2010