This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A173587 #21 May 11 2021 09:04:34 %S A173587 3,17,29,43,127,179,251,277,359,397,433,557,593,811,857,1051,1367, %T A173587 1459,1583,1753,1801,2017,2027,2213,2251,2447,2663,2689,2729,2789, %U A173587 3221,3331,3391,3457,3581,4421,4519,4787,4967,5653,6037,6217,7109,7883,8081 %N A173587 Primes of the form x^3 + 2y^3, with x,y >0. %C A173587 Heath-Brown shows that this sequence is infinite. %H A173587 Zak Seidov, <a href="/A173587/b173587.txt">Table of n, a(n) for n = 1..1000</a> %H A173587 D. R. Heath-Brown, <a href="https://doi.org/10.1007/BF02392715">Primes represented by x^3 + 2y^3</a>, Acta Mathematica 186 (2001), pp. 1-84. %H A173587 H. Iwaniec, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa24/aa2451.pdf">Primes represented by quadratic polynomials in two variables</a>, Acta Arithmetica, 24 (1974), 435-459 %H A173587 T. Mitsui, <a href="http://www.ams.org/mathscinet-getitem?mr=92814">Generalized prime number theorem</a>, Jap.J. Math,26 (1956),1-42 %e A173587 a(1) = 1^3+2*1^3 =3, prime. a(2) = 1^3 + 2* 2^3 = 17. a(7) = 1^3+2*r^3 =251. %p A173587 T:=array(0..5000000): ind:=1: for x from 1 to 1000 do: for y from 1 to 1000 do: z:=x^3 + 2*y^3: if type(z,prime)=true then T[ind] :=z: ind :=ind+1: else fi: od: od: mini:=T[1]: ii:=1: for p from 1 to ind-1 do: for n from 1 to ind-1 do: if T[n] < mini then mini:= T[n]: ii:=n: else fi: od: print(mini): T[ii]:= 999999999999999: ii:=1: mini:=T[1] : od: %t A173587 formQ[p_] := Reduce[0 < x < p^(1/3) && 0 < y < (p/2)^(1/3) && x^3 + 2 y^3 == p, {x, y}, Integers] =!= False; Select[ Prime[ Range[1100]], formQ] (* _Jean-François Alcover_, Sep 28 2011 *) %o A173587 (PARI) list(lim)=my(v=List(),t); for(y=1,sqrtn(lim\2,3), t=2*y^3; for(x=1,sqrtn(lim-t,3), if(isprime(t+x^3), listput(v,t+x^3)))); vecsort(Vec(v),,8) \\ _Charles R Greathouse IV_, Sep 28 2011 %Y A173587 Cf. A007490, A219722. %K A173587 nonn %O A173587 1,1 %A A173587 _Michel Lagneau_, Feb 22 2010 %E A173587 Converted references to links - _R. J. Mathar_, Feb 24 2010