This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A173588 #17 Jan 25 2019 04:09:55 %S A173588 1,2,1,3,5,1,4,21,10,1,5,85,91,17,1,6,341,820,273,26,1,7,1365,7381, %T A173588 4369,651,37,1,8,5461,66430,69905,16276,1333,50,1,9,21845,597871, %U A173588 1118481,406901,47989,2451,65,1,10,87381,5380840,17895697,10172526,1727605,120100,4161,82,1 %N A173588 T(n,k) = (k^n)*U(n, (1/k + k)/2), where U(n,x) is the n-th Chebyshev polynomial of the second kind, square array read by antidiagonals upward (n >= 0, k >= 1). %C A173588 The intersection of this sequence and A121290 is the sequence 1, 5, 85, 341, 5461, 21845, .... - _Paul Muljadi_, Jan 27 2011 %F A173588 T(n,k) = (k^n)*([x^n] 1/(x^2 - (1/k + k)*x + 1)). %e A173588 Square array begins: %e A173588 n\k | 1 2 3 4 5 6 ... %e A173588 ----------------------------------------------------- %e A173588 0 | 1 1 1 1 1 1 ... %e A173588 1 | 2 5 10 17 26 37 ... %e A173588 2 | 3 21 91 273 651 1333 ... %e A173588 3 | 4 85 820 4369 16276 47989 ... %e A173588 4 | 5 341 7381 69905 406901 1727605 ... %e A173588 5 | 6 1365 66430 1118481 10172526 62193781 ... %e A173588 6 | 7 5461 597871 17895697 254313151 2238976117 ... %e A173588 ... %t A173588 p[x_, q_] = 1/(x^2 - (1/q + q)*x + 1); %t A173588 a = Table[Table[n^m*SeriesCoefficient[Series[p[x, n], {x, 0, 50}], m], {m, 0, 20}], {n, 1, 21}]; %t A173588 Flatten[Table[Table[a[[m, n - m + 1]], {m, 1, n}], {n, 1, 10}]] %o A173588 (Maxima) %o A173588 T(n, k) := k^n*chebyshev_u(n, (1/k + k)/2)$ %o A173588 create_list(T(n - k + 1, k), n, 0, 12, k, 1, n + 1); %o A173588 /* _Franck Maminirina Ramaharo_, Jan 18 2019 */ %Y A173588 Cf. A001045, A002450. %Y A173588 Cf. A173590, A173591. %K A173588 nonn,easy,tabl %O A173588 0,2 %A A173588 _Roger L. Bagula_, Feb 22 2010 %E A173588 Edited by _Franck Maminirina Ramaharo_, Jan 24 2019