cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173589 Integers whose binary representation contains exactly three 1's, no two 1's being adjacent.

This page as a plain text file.
%I A173589 #15 Apr 07 2025 10:22:57
%S A173589 21,37,41,42,69,73,74,81,82,84,133,137,138,145,146,148,161,162,164,
%T A173589 168,261,265,266,273,274,276,289,290,292,296,321,322,324,328,336,517,
%U A173589 521,522,529,530,532,545,546,548,552,577,578,580,584,592,641,642,644,648
%N A173589 Integers whose binary representation contains exactly three 1's, no two 1's being adjacent.
%C A173589 Subsequence of A014311. [_R. J. Mathar_, Feb 24 2010]
%C A173589 A000120(a(n))=3; A023416(a(n))>1; 1 < A087116(a(n))<=3. [_Reinhard Zumkeller_, Mar 11 2010]
%H A173589 Robert Israel, <a href="/A173589/b173589.txt">Table of n, a(n) for n = 1..10000</a>
%e A173589 a(1) = 21 = 10101_2.
%e A173589 a(2) = 37 = 100101_2.
%e A173589 a(3) = 41 = 101001_2.
%p A173589 seq(seq(seq(2^a+2^b+2^c, c=0..b-2),b=2..a-2),a=4..10); # _Robert Israel_, Dec 19 2016
%t A173589 e31sQ[n_]:=Module[{idn2=IntegerDigits[n,2]},Total[idn2]==3 && SequenceCount[ idn2,{1,1}]==0]; Select[Range[700],e31sQ] (* Requires Mathematica version 10 or later *) (* _Harvey P. Dale_, Sep 20 2018 *)
%o A173589 (Python)
%o A173589 from math import isqrt, comb
%o A173589 from sympy import integer_nthroot
%o A173589 def A173589(n): return (1<<(r:=n-1-comb((m:=integer_nthroot(6*n,3)[0])+(t:=(n>comb(m+2,3)))+1,3))-comb((k:=isqrt(b:=r+1<<1))+(b>k*(k+1)),2))+(1<<(a:=isqrt(s:=n-comb(m-(t^1)+2,3)<<1))+((s<<2)>(a<<2)*(a+1)+1)+1)+(1<<m+t+3) # _Chai Wah Wu_, Apr 07 2025
%Y A173589 Cf. A000120, A014311, A023416, A087116.
%K A173589 base,nonn
%O A173589 1,1
%A A173589 David Koslicki (koslicki(AT)math.psu.edu), Feb 22 2010
%E A173589 More terms from _R. J. Mathar_, Feb 24 2010