This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A173592 #40 Nov 12 2023 21:52:32 %S A173592 2,10,18,36,54,86,118,1,9,17,35,53,85,117,8,16,34,52,84,116,7,15,33, %T A173592 51,83,115,6,14,32,50,82,114,5,13,31,49,81,113,4,12,30,48,80,112,3,11, %U A173592 29,47,79,111,28,46,78,110,27,45,77,109,26,44,76,108,25,43,75,107,24,42,74 %N A173592 Atomic numbers in the Mendeleyev-Moseley-Seaborg periodic table of elements read downwards columns, right to left. %C A173592 A permutation of the natural numbers from 1 to 118. %C A173592 The number of terms in the columns, also ordered right to left is: 7, 7, 6, 6, 6, 6, 6, 6, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2. %C A173592 This is a consequence of finding 2*7=14, 6*6=36, 10*4=40, 14*2=28 elements with outer shells of s, p, d, and f-electrons. %C A173592 Acronymic name: CMMSPT. %H A173592 SilcoTek, <a href="http://corrosion-doctors.org/Periodic/Periodic-1.htm">Periodic table of the Elements</a> %H A173592 Mark R. Leach, <a href="https://www.meta-synthesis.com/webbook/35_pt/pt_database.php?PT_id=524">2012 Compact Mendeleev-Moseley-Seaborg Periodic Table (CMMSPT)</a>, Database of Periodic Tables (from Chemogenesis). %e A173592 The table contains 7 rows in 32 columns outlined as follows: %e A173592 1 2 %e A173592 3 4 5 6 7 8 9 10 %e A173592 11 12 13 14 15 16 17 18 %e A173592 19 20....28 29 30 31 32 33 34 35 36 %e A173592 37 38....46 47 48 49 50 51 52 53 54 %e A173592 55....69 70....78 79 80 81 82 83 84 85 86 %e A173592 87...101 102...110 111 112 113 114 115 116 117 118 %t A173592 elements = PadLeft[#, 32, 0] & /@ {{1, 2}, Range[3, 10], Range[11, 18], Range[19, 36], Range[37, 54], Range[55, 86], Range[87, 118]}; Transpose[elements] // Reverse // Flatten // Select[#, #!=0& ]& (* _Jean-François Alcover_, Oct 01 2012 *) %Y A173592 Cf. A167268, A137583, A137325. %K A173592 nonn,easy,fini %O A173592 1,1 %A A173592 _Paul Curtz_, Feb 22 2010