cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173593 Numbers having in binary representation exactly two ones in three consecutive digits.

This page as a plain text file.
%I A173593 #14 Feb 18 2018 03:43:05
%S A173593 3,5,6,11,13,22,27,45,54,91,109,182,219,365,438,731,877,1462,1755,
%T A173593 2925,3510,5851,7021,11702,14043,23405,28086,46811,56173,93622,112347,
%U A173593 187245,224694,374491,449389,748982,898779,1497965,1797558,2995931,3595117
%N A173593 Numbers having in binary representation exactly two ones in three consecutive digits.
%C A173593 a(2*n-1) = A033129(n+1);
%C A173593 a(3*n-2) = A113836(n+1);
%C A173593 a(6*n-5) = A083713(n);
%C A173593 a(2*n) - a(2*n-1) = A077947(n+1);
%C A173593 a(2*n+1) - a(2*n) = A077947(n).
%H A173593 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (0, 2, 1, 0, -2).
%F A173593 From _R. J. Mathar_, Feb 24 2010: (Start)
%F A173593 a(n) = 2*a(n-2) + a(n-3) - 2*a(n-5).
%F A173593 G.f.: x*(-3-5*x+2*x^3+4*x^4)/ ((1-x) * (1+x+x^2) * (2*x^2-1)). (End)
%e A173593 a(10) =   91 =      1011011_2
%e A173593 a(11) =  109 =      1101101_2
%e A173593 a(12) =  182 =     10110110_2
%e A173593 a(13) =  219 =     11011011_2
%e A173593 a(14) =  365 =    101101101_2
%e A173593 a(15) =  438 =    110110110_2
%e A173593 a(16) =  731 =   1011011011_2
%e A173593 a(17) =  877 =   1101101101_2
%e A173593 a(18) = 1462 =  10110110110_2
%e A173593 a(19) = 1755 =  11011011011_2
%e A173593 a(20) = 2925 = 101101101101_2
%t A173593 LinearRecurrence[{0, 2, 1, 0, -2}, {3, 5, 6, 11, 13}, 50] (* _Jean-François Alcover_, Feb 17 2018 *)
%Y A173593 Cf. A007088.
%Y A173593 Bisections A033129, A033120.
%K A173593 nonn,base,easy
%O A173593 1,1
%A A173593 _Reinhard Zumkeller_, Feb 22 2010