cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173622 Triangle T(n,m) read by rows: The number of m-Schroeder paths of order n with 2 diagonal steps.

Original entry on oeis.org

1, 6, 21, 30, 180, 546, 140, 1430, 6120, 17710, 630, 10920, 65835, 245700, 695640, 2772, 81396, 690690, 3322704, 11515140, 32212719, 12012, 596904, 7125300, 44170896, 187336380, 619851960, 1721286532, 51480, 4326300, 72624816
Offset: 2

Views

Author

R. J. Mathar, Nov 08 2010

Keywords

Comments

The case with 1 diagonal step is A060543.

Examples

			This is the left-lower portion of the array which starts in row n=2, columns m>=1 as:
1, 2, 3, 4, 5, 6,..
6, 21, 45, 78, 120, 171, 231,.. # A081266
30, 180, 546, 1224, 2310, 3900, 6090, 8976,.. # bisection A055112
140, 1430, 6120, 17710, 40950, 81840, 147630, 246820, 389160,.. # 5-section A034827
630, 10920, 65835, 245700, 695640, 1645020, 3426885, 6497400, ...
2772, 81396, 690690, 3322704, 11515140, 32212719, 77481495, ...
12012, 596904, 7125300, 44170896, 187336380, 619851960, ...
		

References

  • Chunwei Song, The Generalized Schroeder Theory, El. J. Combin. 12 (2005) #R53 Theorem 2.1.

Formula

T(n,m) = trinomial(m*n+n-2; m*n-2,n-2,2)/(m*n-1) .