A173622 Triangle T(n,m) read by rows: The number of m-Schroeder paths of order n with 2 diagonal steps.
1, 6, 21, 30, 180, 546, 140, 1430, 6120, 17710, 630, 10920, 65835, 245700, 695640, 2772, 81396, 690690, 3322704, 11515140, 32212719, 12012, 596904, 7125300, 44170896, 187336380, 619851960, 1721286532, 51480, 4326300, 72624816
Offset: 2
Examples
This is the left-lower portion of the array which starts in row n=2, columns m>=1 as: 1, 2, 3, 4, 5, 6,.. 6, 21, 45, 78, 120, 171, 231,.. # A081266 30, 180, 546, 1224, 2310, 3900, 6090, 8976,.. # bisection A055112 140, 1430, 6120, 17710, 40950, 81840, 147630, 246820, 389160,.. # 5-section A034827 630, 10920, 65835, 245700, 695640, 1645020, 3426885, 6497400, ... 2772, 81396, 690690, 3322704, 11515140, 32212719, 77481495, ... 12012, 596904, 7125300, 44170896, 187336380, 619851960, ...
References
- Chunwei Song, The Generalized Schroeder Theory, El. J. Combin. 12 (2005) #R53 Theorem 2.1.
Formula
T(n,m) = trinomial(m*n+n-2; m*n-2,n-2,2)/(m*n-1) .
Comments