cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173624 Decimal expansion of Pi^2*log(2)/8 - 7*zeta(3)/16, where zeta is the Riemann zeta function.

Original entry on oeis.org

3, 2, 9, 2, 3, 6, 1, 6, 2, 8, 4, 9, 8, 1, 7, 0, 6, 8, 2, 4, 3, 5, 4, 9, 4, 4, 8, 5, 8, 3, 0, 0, 2, 6, 3, 7, 9, 5, 2, 7, 9, 0, 8, 7, 8, 1, 2, 4, 5, 2, 0, 9, 2, 8, 6, 3, 1, 3, 9, 7, 6, 7, 5, 6, 0, 2, 5, 8, 5, 4, 3, 9, 8, 3, 3, 8, 3, 4, 1, 1, 3, 8, 8, 1, 6, 6, 9, 3, 1, 8, 5, 3, 1, 5, 6, 4, 9, 9, 7, 2, 7, 8, 2, 2, 0
Offset: 0

Views

Author

R. J. Mathar, Nov 08 2010

Keywords

Examples

			0.3292361628498170682435494485830026...
		

Crossrefs

Programs

  • Maple
    -7*Zeta(3)/16+Pi^2*log(2)/8 ; evalf(%) ;
  • Mathematica
    N[(1/8) (Pi^2 Log[2] - 7 Zeta[3]/2), 100] (* John Molokach, Aug 02 2013 *)

Formula

The absolute value of the Integral_{x=0..Pi/2} x*log(sin(x)) dx.
Equals A111003 * A002162 - 7*A002117/16. [typo corrected by R. J. Mathar, Nov 15 2010]
Equals Sum_{n>=1} (phi(-1,1,2n)/(2n-1)^2), where phi is the Lerch transcendent. - John Molokach, Jul 22 2013
Equals Sum_{n>=1} 4^n / (8*n^3*binomial(2*n,n)). - John Molokach, Aug 01 2013
Equals Integral_{y=0..1} Integral_{x=0..1} log(x*y+1)/(1-(x*y)^2) dx dy. - Amiram Eldar, Apr 17 2022