cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173661 Logarithmic derivative of the squares of the Fibonacci numbers (A007598, with offset).

This page as a plain text file.
%I A173661 #8 Mar 12 2022 13:11:09
%S A173661 1,7,16,47,121,322,841,2207,5776,15127,39601,103682,271441,710647,
%T A173661 1860496,4870847,12752041,33385282,87403801,228826127,599074576,
%U A173661 1568397607,4106118241,10749957122,28143753121,73681302247,192900153616,505019158607
%N A173661 Logarithmic derivative of the squares of the Fibonacci numbers (A007598, with offset).
%C A173661 The Lucas numbers (A000032) forms the logarithmic derivative of the Fibonacci numbers (A000045).
%F A173661 a(n) = Lucas(n)^2 for odd n, a(n) = Lucas(n)^2 - 2 for even n>0.
%F A173661 O.g.f.: x*(1+4*x-5*x^2+2*x^3)/((1-x^2)*(1-3*x+x^2)).
%e A173661 G.f.: L(x) = x + 7*x^2/2 + 16*x^3/3 + 47*x^4/4 + 121*x^5/5 +...
%e A173661 exp(L(x)) = 1 + x + 2^2*x^2 + 3^2*x^3 + 5^2*x^4 + 8^2*x^5 +...
%o A173661 (PARI) {a(n)=(fibonacci(n-1)+fibonacci(n+1))^2-2*((n-1)%2)}
%o A173661 (PARI) {a(n)=polcoeff(deriv(log(sum(m=0,n,fibonacci(m)^2*x^m)+x*O(x^n))),n)}
%o A173661 (PARI) {a(n)=polcoeff(x*(1+4*x-5*x^2+2*x^3)/((1-x^2)*(1-3*x+x^2+x*O(x^n))),n)}
%Y A173661 Cf. A007598, A000032, A000045.
%K A173661 nonn
%O A173661 1,2
%A A173661 _Paul D. Hanna_, Nov 24 2010