This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A173690 #42 Oct 12 2024 03:17:21 %S A173690 0,0,1,3,6,11,18,28,41,57,77,101,130,164,203,248,299,357,422,494,574, %T A173690 662,759,865,980,1105,1240,1386,1543,1711,1891,2083,2288,2506,2737, %U A173690 2982,3241,3515,3804,4108,4428,4764,5117,5487,5874,6279,6702,7144,7605,8085,8585 %N A173690 Partial sums of round(n^2/5). %C A173690 Partial sums of A008738. %H A173690 Vincenzo Librandi, <a href="/A173690/b173690.txt">Table of n, a(n) for n = 0..2000</a> %H A173690 Mircea Merca, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL14/Merca/merca3.html">Inequalities and Identities Involving Sums of Integer Functions</a> J. Integer Sequences, Vol. 14 (2011), Article 11.9.1. %H A173690 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1,0,1,-3,3,-1). %F A173690 a(n) = Sum_{k=0..n} round(k^2/5); %F A173690 a(n) = round((2*n^3 + 3*n^2 + n)/30); %F A173690 a(n) = floor((2*n^3 + 3*n^2 + n + 6)/30); %F A173690 a(n) = ceiling((2*n^3 + 3*n^2 + n - 6)/30); %F A173690 a(n) = a(n-5) + (n-2)^2 + 2, n > 4; %F A173690 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) + a(n-5) - 3*a(n-6) + 3*a(n-7) - a(n-8), n > 7. %F A173690 G.f.: x^2*(x+1)*(x^2 - x + 1) / ( (x^4 + x^3 + x^2 + x + 1)*(x-1)^4 ). %e A173690 a(5) = round(1/5) + round(4/5) + round(9/5) + round(16/5) + round(25/5) = 0 + 1 + 2 + 3 + 5 = 11. %p A173690 A173690 := proc(n) add( round(i^2/5),i=0..n) ; end proc: # _R. J. Mathar_, Jan 10 2011 %t A173690 Accumulate[Round[Range[0,50]^2/5]] (* or *) LinearRecurrence[{3,-3,1,0,1,-3,3,-1},{0,0,1,3,6,11,18,28},60] (* _Harvey P. Dale_, Mar 16 2022 *) %o A173690 (PARI) a(n)=(2*n^3+3*n^2+n+6)\30 \\ _Charles R Greathouse IV_, May 30 2011 %Y A173690 Cf. A008738. %K A173690 nonn,easy %O A173690 0,4 %A A173690 _Mircea Merca_, Nov 25 2010