This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A173733 #4 Jun 09 2015 16:55:26 %S A173733 3,17,53,83,107,227,251,269,293,347,383,431,443,521,587,599,641,647, %T A173733 683,719,761,773,821,857,929,1031,1097,1217,1223,1301,1367,1409,1433, %U A173733 1451,1619,1637,1709,1787,1973,2081,2087,2129,2399,2477,2591,2633,2657,2693 %N A173733 Primes p which give primes when 1331 = 11^3 is prefixed (see A173579). %C A173733 N = 1331 = 11^3, p k-digit prime, to check if q = N * 10^k + p is prime %C A173733 With exception of 3 necessarily p of form 3k+2, as sod(1331 = 8) %D A173733 K. Haase, P. Mauksch: Spass mit Mathe, Urania-Verlag Leipzig, Verlag Dausien Hanau, 2. Auflage 1985 %D A173733 Helmut Kracke, Mathe-musische Knobelisken, Duemmler Bonn, 2. Auflage 1983 %H A173733 Harvey P. Dale, <a href="/A173733/b173733.txt">Table of n, a(n) for n = 1..1000</a> %e A173733 13313 = prime(1581) => a(1) = prime(2) = 3 %e A173733 133117 = prime(12425) => a(2) = prime(7) = 17 %e A173733 133153 = prime(12427) => a(3) = prime(16) = 53 %e A173733 13311217 = prime(868166) => a(28) = prime(199) = 1217 %e A173733 13311223 = prime(868167) => a(29) = prime(200) = 1223 %e A173733 Note: two consecutive primes P = prime(n), Q = prime(n+1) yield consecutive prime concatenations "N P" = prime(m) and "N Q" = prime(m+1) %t A173733 Select[Prime[Range[400]],PrimeQ[FromDigits[Join[{1,3,3,1}, IntegerDigits[ #]]]]&] (* _Harvey P. Dale_, Jun 09 2015 *) %Y A173733 Cf. A102006, A167535, A168147, A168219, A168274, A173579 %K A173733 nonn,base,less %O A173733 1,1 %A A173733 Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Feb 23 2010 %E A173733 Edited and extended by _Charles R Greathouse IV_, Apr 24 2010