This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A173745 #24 Sep 08 2022 08:45:50 %S A173745 1,8,9,25,49,216,288,324,675,1125,1331,1458,1568,2000,2744,3200,3645, %T A173745 6125,6144,8575,9604,9801,14336,30976,31250,42592,46875,70304,72171, %U A173745 81000,108000,109375,123201,129600,131769,135000,145800,182250,184832 %N A173745 Numbers n such that tau(phi(n)) = sigma(rad(n)). %C A173745 tau(phi(n)) = A000005(A000010(n)) = A062821(n). %C A173745 sigma(rad(n)) = A000203(A007947(n)) = A048250(n). %H A173745 Amiram Eldar, <a href="/A173745/b173745.txt">Table of n, a(n) for n = 1..100</a> %H A173745 W. Sierpinski, <a href="http://matwbn.icm.edu.pl/ksiazki/mon/mon42/mon4204.pdf">Number Of Divisors And Their Sum</a>, Monogr. Matemat. 42 (1964) chapter IV %F A173745 { n : A062821(n) = A048250(n) }. %e A173745 For n=9, tau(phi(9)) = tau(6)=4 equals sigma(rad(9)) = sigma(3) = 4 which adds n=9 to the sequence. %p A173745 with(numtheory):for n from 1 to 1500000 do : t1:= ifactors(n)[2] : t2 :=mul(t1[i][1], i=1..nops(t1)): if tau(phi(n)) = sigma(t2) then print (n): else fi: od : %t A173745 Select[Range[200000], DivisorSigma[0,EulerPhi[#]] == DivisorSigma[1, Times @@ FactorInteger[#][[All,1]]] & ] (* _Jean-François Alcover_, Sep 12 2011 *) %o A173745 (Magma) [1] cat [m:m in [2..200000]|#Divisors(EulerPhi(m)) eq &+Divisors(&*PrimeDivisors(m))]; // _Marius A. Burtea_, Jul 10 2019 %o A173745 (PARI) isok(n) = numdiv(eulerphi(n)) == sigma(factorback(factorint(n)[, 1])); \\ _Michel Marcus_, Jul 10 2019 %K A173745 nonn %O A173745 1,2 %A A173745 _Michel Lagneau_, Feb 23 2010 %E A173745 Unspecific references removed by _R. J. Mathar_, Mar 26 2010