This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A173751 #22 Aug 07 2018 11:40:09 %S A173751 1,1,1,1,1,2,1,1,1,2,1,2,1,2,1,1,1,2,1,4,3,2,1,2,1,2,1,2,1,2,1,1,1,2, %T A173751 1,2,1,2,3,4,1,6,1,2,1,2,1,2,1,2,1,4,1,2,5,2,3,2,1,4,1,2,3,1,1,2,1,4, %U A173751 1,2,1,2,1,2,1,2,1,6,1,4,1,2,1,6,1,2,1,2,1,2,1,2,3,2,1,2,1,2,1,4,1,2,1,4,3 %N A173751 a(n) = gcd(n, lcm_{p is a prime divisor of n} (p-1)) = gcd(n, A173614(n)). %C A173751 a(n) is divisor of A126864(n). %H A173751 Andrew Howroyd, <a href="/A173751/b173751.txt">Table of n, a(n) for n = 1..10000</a> %H A173751 A. M. Oller-Marcen, <a href="http://arxiv.org/abs/1206.1823">On arithmetic numbers</a>, arXiv preprint arXiv:1206.1823 [math.NT], 2012. From _N. J. A. Sloane_, Nov 25 2012 %e A173751 84 = 2^2*3*7; lcm{p-1|p is prime and divisor of 84} = lcm{1,2,6} = 6; gcd(84,6) = 6 ==> a(84)=6. %t A173751 fa=FactorInteger; lcm[n_] := Module[{aux = 1, lon = Length[fa[n]]}, Do[aux = LCM[aux, (fa[n][[i]][[1]] - 1)], {i, lon}]; aux] a[n_] := GCD[lcm[n], n]; Table[a[n], {n, 1, 300}] %o A173751 (PARI) a(n)=gcd(n, lcm(apply(p->p-1, factor(n)[,1]))) \\ _Andrew Howroyd_, Aug 06 2018 %Y A173751 Cf. A173614. %K A173751 nonn %O A173751 1,6 %A A173751 _José María Grau Ribas_, Feb 23 2010