This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A173824 #18 Sep 21 2022 12:00:46 %S A173824 1,2,4,10,8,19,13,45,33,47,30,129,43,96,108,226,78,264,102,357,226, %T A173824 277,163,813,260,425,436,780,297,1092,355,1281,678,856,712,2215,569, %U A173824 1155,1050,2537,752,2544,856,2447,2048,1944,1093,5388,1447,3083,2150,3827 %N A173824 Number of four-dimensional simplical toric diagrams with hypervolume n. %C A173824 Also gives the number of distinct abelian orbifolds of C^5/Gamma, Gamma in SU(5). %H A173824 J. Davey, A. Hanany and R. K. Seong, <a href="https://doi.org/10.1007/JHEP06(2010)010">Counting Orbifolds</a>, J. High Energ. Phys. (2010) 2010: 10; <a href="https://arxiv.org/abs/1002.3609">arXiv:1002.3609 [hep-th]</a>, 2010. %H A173824 A. Hanany and R. K. Seong, <a href="https://doi.org/10.1007/JHEP01(2011)027">Symmetries of abelian orbifolds</a>, J. High Energ. Phys. (2011) 2011: 27; <a href="https://arxiv.org/abs/1009.3017">arXiv:1009.3017 [hep-th]</a>, 2010-2011. Table 5 gives a(1)-a(80), but the terms a(36) and a(65) there are apparently erroneous. %H A173824 Andrey Zabolotskiy, <a href="https://arxiv.org/abs/2003.10251">Coweight lattice A^*_n and lattice simplices</a>, arXiv:2003.10251 [math.CO], 2020. %o A173824 (Sage) %o A173824 # see Python in A159842 for the definition of dc, fin, per, u, N, N2 %o A173824 def fin_d(d): %o A173824 return fin(*(d.get(n+1, 0) for n in range(max(d)))) %o A173824 def a(n): # see Hanany & Seong 2011, Table 1 row D=5 and Table 9 %o A173824 return (dc(u, N, N2, lambda n: n**3)(n) + %o A173824 10 * dc(u, u, N, N2, fin(1, -1, 0, 8))(n) + %o A173824 15 * dc(u, u, N, N, fin_d({1: 1, 2: -3, 4: 14, 8: -12, 16: 16}))(n) + %o A173824 20 * dc(u, u, N, per(0, 1, -1), fin(1, 0, -1, 0, 0, 0, 0, 0, 9))(n) + %o A173824 20 * dc(u, u, u, per(0, 1, -1), fin(1, -1, 0, 2), fin(1, 0, -1, 0, 0, 0, 0, 0, 3))(n) + %o A173824 30 * dc(u, u, u, per(0, 1, 0, -1), fin_d({1: 1, 2: -2, 4: 3, 16: 6, 32: -8, 64: 8}))(n) + %o A173824 24 * dc(u, per(0, 1, -1, -1, 1), per(0, 1, I, -I, -1), per(0, 1, -I, I, -1))(n)) / 120 %o A173824 print([a(n) for n in range(1, 100)]) %Y A173824 Cf. A003051 (No. of two-dimensional triangular toric diagrams of area n), A045790 (No. of three-dimensional tetrahedral toric diagrams of volume n), A173877, A173878. %K A173824 nonn %O A173824 1,2 %A A173824 Rak-Kyeong Seong (rak-kyeong.seong(AT)imperial.ac.uk), Feb 25 2010 %E A173824 a(16) corrected, terms a(31) and beyond added from Hanany & Seong 2011 by _Andrey Zabolotskiy_, Jun 30 2019 %E A173824 a(36) corrected from 2202 to 2215 by _Andrey Zabolotskiy_, Sep 20 2022