This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A173874 #9 Nov 21 2013 12:50:00 %S A173874 29,41,101,173,191,197,383,1019,1049,1091,1163,1409,1481,1613,1637, %T A173874 1721,1823,1913,1973,2027,2099,2243,2339,2351,2447,2729,2837,2897, %U A173874 2999,3023,3089,3137,3167,3203,3251,3407,3881,4019,4349,4397,4451,4457 %N A173874 Primes in A173836. %C A173874 For a prime p and its k-digit cube p^3 we need to check if q = 11^3 * 10^k + p^3 is a prime. %C A173874 11^3*10^k is congruent to 2 (mod 3), so p^3 must be congruent to 2 (mod 3) because otherwise the sum q cannot become a prime. %C A173874 In turn, all p in the sequence are also congruent to 2 (mod 3) (see A003627). %D A173874 K. Haase and P. Mauksch: Spass mit Mathe, Urania-Verlag Leipzig, Verlag Dausien Hanau, 2. Auflage 1985 %H A173874 Harvey P. Dale, <a href="/A173874/b173874.txt">Table of n, a(n) for n = 1..1000</a> %e A173874 The prime 29 is in the sequence because 29^3=24389, and the concatenation 133124389=prime(7545294) is a prime number. %p A173874 cat2 := proc(a,b) ndgs := max(1, ilog10(b)+1) ; a*10^ndgs+b ; end proc: %p A173874 for i from 1 to 800 do p := ithprime(i) ; if isprime(cat2(1331,p^3)) then printf("%d,",p) ; end if; end do: # _R. J. Mathar_, Mar 26 2010 %t A173874 Select[Prime[Range[2000]],PrimeQ[FromDigits[Join[{1,3,3,1}, IntegerDigits[ #^3]]]]&] (* _Harvey P. Dale_, Oct 14 2011 *) %Y A173874 Cf. A000578, A168147, A168219, A173579, A173733, A173836 %K A173874 base,nonn %O A173874 1,1 %A A173874 Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Mar 01 2010 %E A173874 Definition simplified, missing numbers 2243, 2339 etc. inserted, numbers like 2621, 2693 removed - _R. J. Mathar_, Mar 26 2010