cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173898 Decimal expansion of sum of the reciprocals of the Mersenne primes.

This page as a plain text file.
%I A173898 #43 Feb 16 2025 08:33:12
%S A173898 5,1,6,4,5,4,1,7,8,9,4,0,7,8,8,5,6,5,3,3,0,4,8,7,3,4,2,9,7,1,5,2,2,8,
%T A173898 5,8,8,1,5,9,6,8,5,5,3,4,1,5,4,1,9,7,0,1,4,4,1,9,3,1,0,6,5,2,7,3,5,6,
%U A173898 8,7,0,1,4,4,0,2,1,2,7,2,3,4,9,9,1,5,4,8,8,3,2,9,3,6,6,6,2,1,5,3,7,4,0,3,2,4
%N A173898 Decimal expansion of sum of the reciprocals of the Mersenne primes.
%C A173898 We know this a priori to be strictly less than the Erdős-Borwein constant (A065442), which Erdős (1948) showed to be irrational. This new constant would also seem to be irrational.
%H A173898 Peter B. Borwein, <a href="https://doi.org/10.1017/S030500410007081X">On the Irrationality of Certain Series</a>, Math. Proc. Cambridge Philos. Soc. 112, 141-146, 1992.
%H A173898 Paul Erdős, <a href="https://users.renyi.hu/~p_erdos/1948-04.pdf">On Arithmetical Properties of Lambert Series</a>, J. Indian Math. Soc. 12, 63-66, 1948.
%H A173898 Yoshihiro Tanaka, <a href="https://doi.org/10.4236/ajcm.2017.72012">On the Sum of Reciprocals of Mersenne Primes</a>, American Journal of Computational Mathematics, Vol. 7, No. 2 (2017), pp. 145-148.
%H A173898 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/Erdos-BorweinConstant.html">Erdos-Borwein Constant</a>.
%H A173898 Marek Wolf, <a href="http://arxiv.org/abs/1112.2412">Computer experiments with Mersenne primes</a>, arXiv preprint arXiv:1112.2412 [math.NT], 2011.
%F A173898 Sum_{i>=1} 1/A000668(i).
%e A173898 Decimal expansion of (1/3) + (1/7) + (1/31) + (1/127) + (1/8191) + (1/131071) + (1/524287) + ... = .5164541789407885653304873429715228588159685534154197.
%e A173898 This has continued fraction expansion 0 + 1/(1 + 1/(1 + 1/(14 + 1/(1 + ...)))) (see A209601).
%p A173898 Digits := 120 ; L := [ 2, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4423, 9689, 9941, 11213, 19937, 21701, 23209, 44497, 86243, 110503, 132049, 216091, 756839, 859433, 1257787, 1398269, 2976221, 3021377, 6972593, 13466917 ] ;
%p A173898 x := 0 ; for i from 1 to 30 do x := x+1.0/(2^op(i,L)-1 ); end do ;
%t A173898 RealDigits[Sum[1/(2^p - 1), {p, MersennePrimeExponent[Range[14]]}], 10, 100][[1]] (* _Amiram Eldar_, May 24 2020 *)
%o A173898 (PARI) isM(p)=my(m=Mod(4,2^p-1));for(i=1,p-2,m=m^2-2);!m
%o A173898 s=1/3;forprime(p=3,default(realprecision)*log(10)\log(2), if(isM(p), s+=1./(2^p-1)));s \\ _Charles R Greathouse IV_, Mar 22 2012
%Y A173898 Cf. A209601, A000668, A065442 (decimal expansion of Erdos-Borwein constant), A000043, A001348, A046051, A057951-A057958, A034876, A124477, A135659, A019279, A061652, A000225.
%K A173898 cons,nonn
%O A173898 0,1
%A A173898 _Jonathan Vos Post_, Mar 01 2010
%E A173898 Entry revised by _N. J. A. Sloane_, Mar 10 2012