This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A173920 #10 Sep 19 2021 12:10:34 %S A173920 0,0,1,0,1,0,0,1,1,2,0,1,0,1,0,0,1,0,1,1,2,0,1,1,2,0,1,1,0,1,1,2,1,2, %T A173920 2,3,0,1,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,1,2,0,1,0,1,1,2,1,2,0,1,0,0,1, %U A173920 0,1,1,2,1,2,1,2,1,2,0,1,1,2,0,1,1,2,0,1,1,2,0,0,1,1,2,0,1,1,2,1,2,2,3,1,2 %N A173920 Triangle read by rows: T(n,k) = convolution of n with k in binary representation, 0<=k<=n. %C A173920 T(n,k) = SUM(bn(i)*bk(L-i-1): 0<=i<L), where L=A070939(n), n=SUM(bn(i)*2^i:0<=i<L), and k=SUM(bk(i)*2^i:0<=i<L); %C A173920 T(n,2*k+1) = T(n,2*k) + 1; %C A173920 T(n,k) <= MIN{A000120(n),A000120(k)}; %C A173920 row sums give A173921; central terms give A159780; %C A173920 T(n,0) = A000004(n); %C A173920 T(n,1) = A000012(n) for n>0; %C A173920 T(n,2) = A079944(n-2) for n>1; %C A173920 T(n,3) = A079882(n-2) for n>2; %C A173920 T(n,4) = A173922(n-4) for n>3; %C A173920 T(n,8) = A173923(n-8) for n>7; %C A173920 T(n,n) = A159780(n). %H A173920 R. Zumkeller, <a href="/A173920/b173920.txt">Rows 0 to 320 of the triangle, flattened</a> %H A173920 <a href="/index/Bi#binary">Index entries for sequences related to binary expansion of n</a> %F A173920 T(n,k) = c(A030101(n),k,0) with c(x,y,z) = if y=0 then z else c([x/2],[y/2],z+(x mod 2)*(y mod 2)). %e A173920 T(13,10) = T('1101','1010') = 1*0 + 1*1 + 0*0 + 1*1 = 2; %e A173920 T(13,11) = T('1101','1011') = 1*1 + 1*1 + 0*0 + 1*1 = 3; %e A173920 T(13,12) = T('1101','1100') = 1*0 + 1*0 + 0*1 + 1*1 = 1; %e A173920 T(13,13) = T('1101','1101') = 1*1 + 1*0 + 0*1 + 1*1 = 2. %e A173920 Triangle begins: %e A173920 0; %e A173920 0, 1; %e A173920 0, 1, 0; %e A173920 0, 1, 1, 2; %e A173920 0, 1, 0, 1, 0; %e A173920 0, 1, 0, 1, 1, 2; %e A173920 ... %t A173920 T[n_, k_] := Module[{bn, bk, lg}, %t A173920 bn = IntegerDigits[n, 2]; %t A173920 bk = IntegerDigits[k, 2]; %t A173920 lg = Max[Length[bn], Length[bk]]; %t A173920 ListConvolve[PadLeft[bn, lg], PadLeft[bk, lg]]][[1]]; %t A173920 Table[T[n, k], {n, 0, 13}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Sep 19 2021 *) %K A173920 nonn,tabl %O A173920 0,10 %A A173920 _Reinhard Zumkeller_, Mar 04 2010