cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173925 Expansion of 1/(1 - x - x^8 - x^15 + x^16).

This page as a plain text file.
%I A173925 #28 Sep 08 2022 08:45:51
%S A173925 1,1,1,1,1,1,1,1,2,3,4,5,6,7,8,10,12,15,19,24,30,37,45,56,69,85,105,
%T A173925 130,161,199,246,304,376,465,575,711,879,1086,1343,1660,2052,2537,
%U A173925 3137,3879,4796,5929,7330,9062,11203,13850,17123,21170,26173,32359,40006
%N A173925 Expansion of 1/(1 - x - x^8 - x^15 + x^16).
%C A173925 Limiting ratio is 1.2303914344072246.
%C A173925 The polynomial is the 10th Salem on Mossinghoff's list.
%H A173925 G. C. Greubel, <a href="/A173925/b173925.txt">Table of n, a(n) for n = 0..1000</a>
%H A173925 Michael Mossinghoff, <a href="http://www.cecm.sfu.ca/~mjm/Lehmer/lists/SalemList.html">Small Salem Numbers</a>
%H A173925 <a href="/index/Rec#order_16">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,-1).
%F A173925 a(n) = a(n-1) + a(n-8) + a(n-15) - a(n-16). - _Harvey P. Dale_, Apr 02 2012
%p A173925 seq(coeff(series(1/(1-x-x^8-x^15+x^16), x, n+1), x, n), n = 0..60); # _G. C. Greubel_, Dec 15 2019
%t A173925 CoefficientList[Series[1/(1-x-x^8-x^15+x^16), {x, 0, 60}] ,x] (* _Harvey P. Dale_, Apr 02 2012 *)
%o A173925 (PARI) my(x='x+O('x^60)); Vec(1/(1-x-x^8-x^15+x^16)) \\ _G. C. Greubel_, Nov 03 2018
%o A173925 (Magma) R<x>:=PowerSeriesRing(Integers(), 60); Coefficients(R!(1/(1-x-x^8-x^15+x^16))); // _G. C. Greubel_, Nov 03 2018
%o A173925 (Sage)
%o A173925 def A173925_list(prec):
%o A173925     P.<x> = PowerSeriesRing(ZZ, prec)
%o A173925     return P( 1/(1-x-x^8-x^15+x^16) ).list()
%o A173925 A173925_list(60) # _G. C. Greubel_, Dec 15 2019
%Y A173925 Cf. A029826, A117791, A143419, A143438, A143472, A143619, A143644, A147663, A173908, A173911, A173924, A174522, A175740, A175772, A175773, A175782, A181600, A204631, A225391, A225393, A225394, A225482, A225499.
%K A173925 nonn,easy
%O A173925 0,9
%A A173925 _Roger L. Bagula_, Nov 26 2010