cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A173973 Decimal expansion of Zeta[2,1/3] - 2*Pi^2/3.

This page as a plain text file.
%I A173973 #16 Jan 15 2021 09:54:03
%S A173973 3,5,1,5,8,6,0,8,5,8,0,3,4,1,8,8,3,3,5,9,0,2,3,4,3,4,3,3,3,0,8,4,1,5,
%T A173973 6,0,3,6,4,3,1,0,4,5,1,4,4,5,3,7,8,4,3,9,0,9,9,9,4,5,0,2,8,3,3,5,0,9,
%U A173973 9,1,4,3,0,9,3,2,2,8,1,9,8,1,4,1,7,9,1,3,0,6,8,7,4,4,9,4,4,3,7,4,5,9,4,6,9
%N A173973 Decimal expansion of Zeta[2,1/3] - 2*Pi^2/3.
%C A173973 Zeta[s,a] is Mathematica's notation for the shifted Zeta-function Sum_{n>=1} 1/(n-a)^s. - _R. J. Mathar_, Jun 17 2016
%F A173973 Equals Zeta[2,1/3] - 2(Pi^2)/3 = 2(Pi^2)/3 - Zeta[2,2/3].
%e A173973 3.5158608...
%p A173973 Zeta(0,2,1/3)-2*Pi^2/3 ; evalf(%) ; # _R. J. Mathar_, Jun 17 2016
%t A173973 RealDigits[N[(Zeta[2, 1/3] - Zeta[2, 2/3])/2, 300]]
%o A173973 (PARI) zetahurwitz(2,1/3)-2*Pi^2/3 \\ _Charles R Greathouse IV_, Jan 31 2018
%K A173973 nonn,cons
%O A173973 1,1
%A A173973 _Artur Jasinski_, Mar 03 2010
%E A173973 Definition revised by _N. J. A. Sloane_, Aug 30 2011