cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A174009 Numbers n such that A174008(k)=n-th prime.

Original entry on oeis.org

1, 4, 5, 11, 13, 16, 18, 19, 20, 25, 33, 37, 38, 39, 40, 48, 52, 59, 60, 69, 72, 73, 76, 79, 84, 85, 86, 87, 96, 98, 104, 110, 117, 122, 135, 136, 140, 142, 145, 151, 153, 160, 162, 173, 179, 183, 186, 191, 192, 199, 200, 206, 214, 218, 221, 226, 232, 234, 239, 242
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 05 2010

Keywords

Comments

n-th prime in sequence A174008.

Examples

			a(1)=1 because A174008(1)=2=1st prime;
a(2)=4 because A174008(2)=7=4th prime;
a(3)=5 because A174008(3)=11=5th prime;
a(4)=11 because A174008(7)=31=11th prime.
		

Crossrefs

Programs

  • Maple
    From R. J. Mathar, Apr 28 2010: (Start)
    A163300 := proc(n) option remember ; if n = 1 then 0; else for a from procname(n-1)+2 by 2 do if not isprime(a) then return a ; end if; end do; end if; end proc:
    A174008 := proc(n) ithprime(n)+A163300(n) ; end proc:
    A174009 := proc(k) p := A174008(k) ; if isprime(p) then printf("%d,", numtheory[pi](p) ) ; end if; return ; end proc:
    seq(A174009(k),k=1..400 ) ; (End)

Extensions

More terms from R. J. Mathar, Apr 28 2010

A174010 Primes p of the form p = A000040(k) - A163300(k) for some k (includes duplicates).

Original entry on oeis.org

2, 3, 3, 5, 13, 17, 29, 31, 31, 37, 41, 47, 53, 67, 71, 71, 79, 79, 83, 89, 97, 97, 107, 107, 127, 131, 151, 181, 197, 211, 229, 241, 257, 257, 269, 271, 281, 283, 283, 311, 353, 373, 389, 401, 409, 409, 419, 419, 431, 449, 463, 479, 491, 499, 547, 563, 577, 577
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 05 2010

Keywords

Comments

Primes of form k-th prime minus k-th even nonnegative nonprime.
Essentially the same as A144419.

Examples

			a(1)=2 because 2-0=2; a(2)=3 because 17-14=3; a(3)=3 because 19-16=3; a(4)=5 because 23-18=5; a(5)=13 because 37-24=13.
		

Crossrefs

Programs

  • Maple
    A163300 := proc(n) if n <= 2 then op(n,[0,4]) ; else for a from procname(n-1)+2 by 2 do if not isprime(a) then return a; end if; end do; end if; end proc:
    for n from 1 to 400 do p := ithprime(n) -A163300(n) ; if isprime(p) then printf("%d,",p) ; end if; end do: # R. J. Mathar, May 02 2010

Extensions

Corrected (83 inserted) by R. J. Mathar, May 02 2010
Showing 1-2 of 2 results.