cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A174358 Alternating triangle (version 3) read by rows: numbers k such that k=6*m+3-+2=r*j , r>=j and n>=q where r=6*n+3-2 or r=6*n+3+2 and j=6*q+3-2 or j=6*q+3+2.

Original entry on oeis.org

5, 1, 25, 11, 35, 77, 7, 55, 49, 121, 17, 65, 119, 143, 221, 13, 85, 91, 181, 109, 289, 23, 95, 161, 209, 299, 323, 437, 19, 115, 133, 253, 247, 391, 361, 529, 29, 125, 203, 275, 377, 425, 551, 575, 725, 25, 145, 175, 319, 325, 493, 475, 667, 625, 841, 35, 185, 245
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Mar 17 2010, Mar 30 2010

Keywords

Comments

Numbers of form 6*m+3+2 are in even rows, numbers of form 6*m+3-2 are in odd rows. Numbers of alternating triangle (version 1) are A173865. Numbers of alternating triangle (version 2) are A174027.

Examples

			Triangle begins: 5*1 1*1 5*5 11*1 7*5 11*7 7*1 11*5 7*7 11*11 17*1 13*5 17*7 13*11 17*13 13*1 17*5 13*7 17*11 13*13 17*17.. or 5(in even 0 row) 1 25(in odd 1 row) 11 35 77(in even 2 row) 7 55 49 121(in odd 3 row) 17 65 119 143 221(in even 4 row) 13 85 91 181 169 289(in odd 5 row)..
That is:
5;
1, 25;
11, 35, 77;
7, 55, 49, 121;
17, 65, 119, 143;
		

Crossrefs

Showing 1-1 of 1 results.