This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A174088 #24 Apr 28 2023 08:17:09 %S A174088 1,2,3,5,5,8,7,11,12,14,11,21,13,20,23,26,17,33,19,37,33,32,23,51,35, %T A174088 38,42,53,29,68,31,58,53,50,59,87,37,56,63,91,41,98,43,85,96,68,47, %U A174088 122,70,100,83,101,53,123,95,131,93,86,59,181,61,92,138,132,113,158,67,133,113 %N A174088 Number of pairs (i,j) such that i*j == 0 (mod k), 0 <= i <= j < k. %C A174088 a(p) = p for p prime, since gcd(k,p) = 1 for 1 <= k < p, the product of k is also coprime to p, but multiples n*p for n >= 1 are plainly divisible by p. - _Michael De Vlieger_, Nov 22 2019 %H A174088 Amiram Eldar, <a href="/A174088/b174088.txt">Table of n, a(n) for n = 1..10000</a> (terms 1..1000 from Michael De Vlieger) %F A174088 a(n) = ( A018804(n) + A000188(n) ) / 2. - _Max Alekseyev_, Sep 05 2010 %t A174088 Table[If[PrimeQ@ b, b, Count[Flatten@ Array[# Range@ # &, b], _?(Mod[#, b] == 0 &)]], {b, 69}] (* _Michael De Vlieger_, Nov 22 2019 *) %t A174088 f1[p_, e_] := (e*(p - 1)/p + 1)*p^e; f2[p_, e_] := p^Floor[e/2]; a[n_] := (Times @@ f1 @@@ (fct = FactorInteger[n]) + Times @@ f2 @@@ fct)/2; Array[a, 100] (* _Amiram Eldar_, Apr 28 2023 *) %o A174088 (PARI) a(n)={ my(ct=0); for(i=0,n-1,for(j=0,i, ct+=(Mod(i*j,n)==0) ) ); ct; } \\ _Joerg Arndt_, Aug 03 2013 %Y A174088 Cf. A000188, A018804. %K A174088 nonn %O A174088 1,2 %A A174088 _Russell Easterly_, Mar 06 2010 %E A174088 More terms from _Max Alekseyev_, Sep 05 2010 %E A174088 Better name from _Joerg Arndt_, Aug 03 2013