This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A174090 #70 Oct 25 2024 02:26:24 %S A174090 1,2,3,4,5,7,8,11,13,16,17,19,23,29,31,32,37,41,43,47,53,59,61,64,67, %T A174090 71,73,79,83,89,97,101,103,107,109,113,127,128,131,137,139,149,151, %U A174090 157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,256 %N A174090 Powers of 2 and odd primes; alternatively, numbers that cannot be written as a sum of at least three consecutive positive integers. %C A174090 From _Omar E. Pol_, Feb 24 2014: (Start) %C A174090 Also the odd noncomposite numbers (A006005) and the powers of 2 with positive exponent, in increasing order. %C A174090 If a(n) is composite and a(n) - a(n-1) = 1 then a(n-1) is a Mersenne prime (A000668), hence a(n-1)*a(n)/2 is a perfect number (A000396) and a(n-1)*a(n) equals the sum of divisors of a(n-1)*a(n)/2. %C A174090 If a(n) is even and a(n+1) - a(n) = 1 then a(n+1) is a Fermat prime (A019434). (End) %H A174090 Robert Israel, <a href="/A174090/b174090.txt">Table of n, a(n) for n = 1..10000</a> %H A174090 Jaap Spies, <a href="http://www.jaapspies.nl/bookb5.pdf">A Bit of Math, The Art of Problem Solving</a>, Jaap Spies Publishers (2019). %H A174090 Nieuw Archief voor Wiskunde, <a href="http://www.jaapspies.nl/mathfiles/problem2005-2C.pdf">Problems/UWC, Problem C</a>, Vol. 5/6, No. 2. %F A174090 a(n) ~ n log n. - _Charles R Greathouse IV_, Sep 19 2024 %p A174090 N:= 300: # to get all terms <= N %p A174090 S:= {seq(2^i,i=0..ilog2(N))} union select(isprime,{ 2*i+1 $ i=1..floor((N-1)/2) }): %p A174090 sort(convert(S,list)); # _Robert Israel_, Jun 18 2015 %t A174090 a[n_] := Product[GCD[2 i - 1, n], {i, 1, (n - 1)/2}] - 1; %t A174090 Select[Range[242], a[#] == 0 &] (* _Gerry Martens_, Jun 15 2015 *) %o A174090 (Python) %o A174090 from sympy import primepi %o A174090 def A174090(n): %o A174090 def bisection(f,kmin=0,kmax=1): %o A174090 while f(kmax) > kmax: kmax <<= 1 %o A174090 while kmax-kmin > 1: %o A174090 kmid = kmax+kmin>>1 %o A174090 if f(kmid) <= kmid: %o A174090 kmax = kmid %o A174090 else: %o A174090 kmin = kmid %o A174090 return kmax %o A174090 def f(x): return int(n+x+(0 if x<=1 else 1-primepi(x))-x.bit_length()) %o A174090 return bisection(f,n,n) # _Chai Wah Wu_, Sep 19 2024 %o A174090 (PARI) list(lim)=Set(concat(concat(1,primes(lim)), vector(logint(lim\2,2),i,2^(i+1)))) \\ _Charles R Greathouse IV_, Sep 19 2024 %o A174090 (PARI) select( {is_A174090(n)=isprime(n)||n==1<<exponent(n+!n)}, [0..299]) \\ _M. F. Hasler_, Oct 24 2024 %Y A174090 Numbers not in A111774. %Y A174090 Equals A000079 UNION A065091. %Y A174090 Equals A067133 \ {6}. %Y A174090 Cf. A000040, A000203, A000396, A000668, A006005, A019434, A092506. %Y A174090 Cf. also A138591, A174069, A174070, A174071. %K A174090 nonn,easy %O A174090 1,2 %A A174090 _Vladimir Joseph Stephan Orlovsky_, Mar 07 2010, and _Omar E. Pol_, Feb 24 2014 %E A174090 This entry is the result of merging an old incorrect entry and a more recent correct version. _N. J. A. Sloane_, Dec 07 2015