This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A174098 #13 Sep 08 2022 08:45:51 %S A174098 2,5,5,13,33,13,28,151,151,28,60,595,1208,595,60,123,2146,7809,7809, %T A174098 2146,123,251,7304,44117,78095,44117,7304,251,506,23920,227596,655177, %U A174098 655177,227596,23920,506,1018,76318,1101744,4869057,7862124,4869057,1101744,76318,1018 %N A174098 Symmetrical triangle T(n, m) = floor(Eulerian(n+1, m)/2), read by rows. %C A174098 Row sums are: {2, 10, 59, 358, 2518, 20156, 181439, 1814398, 19958398, 239500796, 3113510398, 43589145596, 653837183996, ...}. %H A174098 G. C. Greubel, <a href="/A174098/b174098.txt">Rows n = 2..100 of triangle, flattened</a> %F A174098 T(n, m) = floor(Eulerian(n+1, m)/2), where Eulerian(n,k) = A008292(n,k). %e A174098 Triangle begins as: %e A174098 2; %e A174098 5, 5; %e A174098 13, 33, 13; %e A174098 28, 151, 151, 28; %e A174098 60, 595, 1208, 595, 60; %e A174098 123, 2146, 7809, 7809, 2146, 123; %e A174098 251, 7304, 44117, 78095, 44117, 7304, 251; %e A174098 506, 23920, 227596, 655177, 655177, 227596, 23920, 506; %t A174098 Eulerian[n_, k_]:= Sum[(-1)^j*Binomial[n+1, j]*(k-j+1)^n, {j, 0, k+1}]; %t A174098 Table[Floor[Eulerian[n+1, m]/2], {n, 2, 12}, {m, 1, n-1}]//Flatten (* _G. C. Greubel_, Apr 25 2019 *) %o A174098 (PARI) {T(n,k) = (sum(j=0,k+1, (-1)^j*binomial(n+2,j)*(k-j+1)^(n+1)))\2}; %o A174098 for(n=2,12, for(k=1,n-1, print1(T(n,k), ", "))) \\ _G. C. Greubel_, Apr 25 2019 %o A174098 (Magma) [[Floor((&+[(-1)^j*Binomial(n+2,j)*(k-j+1)^(n+1): j in [0..k+1]] )/2): k in [1..n-1]]: n in [2..12]]; // _G. C. Greubel_, Apr 25 2019 %o A174098 (Sage) [[floor(sum((-1)^j*binomial(n+2,j)*(k-j+1)^(n+1) for j in (0..k+1))/2) for k in (1..n-1)] for n in (2..12)] # _G. C. Greubel_, Apr 25 2019 %Y A174098 Cf. A008292, A166454. %K A174098 nonn,tabl %O A174098 2,1 %A A174098 _Roger L. Bagula_, Mar 07 2010 %E A174098 Edited by _G. C. Greubel_, Apr 25 2019