A174099 Indices of primes of the form 2^t*3^u + 1 in the primes.
1, 2, 3, 4, 6, 7, 8, 12, 21, 25, 29, 38, 44, 55, 84, 93, 106, 136, 191, 211, 232, 378, 422, 483, 539, 1272, 1470, 2014, 2111, 4144, 5359, 6543, 13006, 13632, 18802, 28547, 39420, 51327, 59982, 62947, 66875, 78156, 91466, 113675, 132938, 148273, 193541
Offset: 1
Keywords
Examples
a(1) = 1 because 2^0 * 3^0 + 1 = 2 = prime(1). a(2) = 2 because 2^1 * 3^0 + 1 = 3 = prime(2).
Links
- Amiram Eldar, Table of n, a(n) for n = 1..166
Programs
-
Mathematica
With[{lim = 10^7}, PrimePi[Select[Sort@ Flatten@ Table[2^i * 3^j + 1, {i, 0, Log2[lim]}, {j, 0, Log[3, lim/2^i]}], PrimeQ]]] (* Amiram Eldar, Sep 02 2024 *)
-
PARI
lista(lim) = {my(s = List()); for(i = 0, logint(lim, 2), for(j = 0, logint(lim >> i, 3), listput(s, 2^i * 3^j + 1))); s = Set(s); for(i = 1, #s, if(isprime(s[i]), print1(primepi(s[i]), ", ")));} \\ Amiram Eldar, Sep 02 2024
Extensions
Corrected and extended by Charles R Greathouse IV, Mar 21 2010
Comments