This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A174119 #12 Feb 12 2021 07:52:26 %S A174119 1,1,1,1,1,1,1,5,5,1,1,14,70,14,1,1,30,420,420,30,1,1,55,1650,4620, %T A174119 1650,55,1,1,91,5005,30030,30030,5005,91,1,1,140,12740,140140,300300, %U A174119 140140,12740,140,1,1,204,28560,519792,2042040,2042040,519792,28560,204,1,1,285,58140,1627920,10581480,19399380,10581480,1627920,58140,285,1 %N A174119 Triangle T(n, k) = ((n-k)/6)*binomial(n-1, k-1)*binomial(2*n, 2*k) with T(n, 0) = T(n, n) = 1, read by rows. %H A174119 G. C. Greubel, <a href="/A174119/b174119.txt">Rows n = 0..100 of the triangle, flattened</a> %F A174119 T(n, k) = c(n)/(c(k)*c(n-k)) where c(n) = Product_{j=2..n} j*(j-1)*(2*j-1)/6 for n > 2 otherwise 1. %F A174119 From _G. C. Greubel_, Feb 11 2021: (Start) %F A174119 T(n, k) = ((n-k)/6)*binomial(n-1, k-1)*binomial(2*n, 2*k) with T(n, 0) = T(n, n) =1. %F A174119 Sum_{k=0..n} T(n, k) = (n*(n-1)*(2*n-1)/6)*HypergeometricPFQ[{1-n, 3/2-n, 2-n}, {3/2, 2}, -1] + 2 - [n=0] (n*(n-1)*(2*n-1)/6)*A196148[n-2] + 2 - [n=0]. (End) %e A174119 Triangle begins as: %e A174119 1; %e A174119 1, 1; %e A174119 1, 1, 1; %e A174119 1, 5, 5, 1; %e A174119 1, 14, 70, 14, 1; %e A174119 1, 30, 420, 420, 30, 1; %e A174119 1, 55, 1650, 4620, 1650, 55, 1; %e A174119 1, 91, 5005, 30030, 30030, 5005, 91, 1; %e A174119 1, 140, 12740, 140140, 300300, 140140, 12740, 140, 1; %e A174119 1, 204, 28560, 519792, 2042040, 2042040, 519792, 28560, 204, 1; %e A174119 1, 285, 58140, 1627920, 10581480, 19399380, 10581480, 1627920, 58140, 285, 1; %t A174119 (* First program *) %t A174119 c[n_]:= If[n<2, 1, Product[j*(j-1)*(2*j-1)/6, {j, 2, n}]]; %t A174119 T[n_, k_]:= c[n]/(c[k]*c[n-k]); %t A174119 Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten %t A174119 (* Second program *) %t A174119 T[n_, k_]:= If[k==0 || k==n, 1, ((n-k)/6)*Binomial[n-1, k-1]*Binomial[2*n, 2*k]]; %t A174119 Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* _G. C. Greubel_, Feb 11 2021 *) %o A174119 (Sage) %o A174119 def T(n,k): return 1 if (k==0 or k==n) else ((n-k)/6)*binomial(n-1, k-1)*binomial(2*n, 2*k) %o A174119 flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Feb 11 2021 %o A174119 (Magma) %o A174119 T:= func< n,k | k eq 0 or k eq n select 1 else ((n-k)/6)*Binomial(n-1, k-1)*Binomial(2*n, 2*k) >; %o A174119 [T(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Feb 11 2021 %Y A174119 Cf. A174116, A174117, A174124, A174125. %Y A174119 Cf. A111910, A196148. %K A174119 nonn,tabl,easy %O A174119 0,8 %A A174119 _Roger L. Bagula_, Mar 08 2010 %E A174119 Edited by _G. C. Greubel_, Feb 11 2021