cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174126 Triangle T(n, k) = (n-k)^2 * binomial(n-1, k-1)^2 with T(n, 0) = T(n, n) = 1, read by rows.

This page as a plain text file.
%I A174126 #13 Feb 11 2021 02:44:12
%S A174126 1,1,1,1,1,1,1,4,4,1,1,9,36,9,1,1,16,144,144,16,1,1,25,400,900,400,25,
%T A174126 1,1,36,900,3600,3600,900,36,1,1,49,1764,11025,19600,11025,1764,49,1,
%U A174126 1,64,3136,28224,78400,78400,28224,3136,64,1,1,81,5184,63504,254016,396900,254016,63504,5184,81,1
%N A174126 Triangle T(n, k) = (n-k)^2 * binomial(n-1, k-1)^2 with T(n, 0) = T(n, n) = 1, read by rows.
%C A174126 This triangle sequence is part of a class of triangles defined by T(n, k, q) = (n-k)^q * binomial(n-1, k-1)^q with T(n, 0) = T(n, n) = 1 and have row sums Sum_{k=0..n} T(n, k, q) = 2 - [n=0] + Sum_{k=1..n-1} k^q * binomial(n-1, k)^q. - _G. C. Greubel_, Feb 10 2021
%H A174126 G. C. Greubel, <a href="/A174126/b174126.txt">Rows n = 0..100 of the triangle, flattened</a>
%F A174126 Let c(n) = Product_{i=2..n} (i-1)^2 for n > 2 otherwise 1. The number triangle is given by T(n, k) = c(n)/(c(k)*c(n-k)).
%F A174126 From _G. C. Greubel_, Feb 10 2021: (Start)
%F A174126 T(n, k) = (n-k)^2 * binomial(n-1, k-1)^2 with T(n, 0) = T(n, n) = 1.
%F A174126 Sum_{k=0..n} T(n, k) = 2 + A037966(n-1) - [n=0] = 2 + (n-1)^3*C_{n-2} - [n=0], where C_{n} are the Catalan numbers (A000108) and [] is the Iverson bracket. (End)
%e A174126 Triangle begins as:
%e A174126   1;
%e A174126   1,  1;
%e A174126   1,  1,    1;
%e A174126   1,  4,    4,     1;
%e A174126   1,  9,   36,     9,      1;
%e A174126   1, 16,  144,   144,     16,      1;
%e A174126   1, 25,  400,   900,    400,     25,      1;
%e A174126   1, 36,  900,  3600,   3600,    900,     36,     1;
%e A174126   1, 49, 1764, 11025,  19600,  11025,   1764,    49,    1;
%e A174126   1, 64, 3136, 28224,  78400,  78400,  28224,  3136,   64,  1;
%e A174126   1, 81, 5184, 63504, 254016, 396900, 254016, 63504, 5184, 81, 1;
%t A174126 (* First program *)
%t A174126 c[n_]:= If[n<2, 1, Product[(i-1)^2, {i,2,n}]];
%t A174126 T[n_, k_]:= c[n]/(c[k]*c[n-k]);
%t A174126 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten
%t A174126 (* Second program *)
%t A174126 T[n_, k_, q_]:= If[k==0 || k==n, 1, (n-k)^q*Binomial[n-1, k-1]^q];
%t A174126 Table[T[n,k,2], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Feb 10 2021 *)
%o A174126 (Sage)
%o A174126 def T(n,k,q): return 1 if (k==0 or k==n) else (n-k)^q*binomial(n-1,k-1)^q
%o A174126 flatten([[T(n,k,2) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Feb 10 2021
%o A174126 (Magma)
%o A174126 T:= func< n,k,q | k eq 0 or k eq n select 1 else (n-k)^q*Binomial(n-1,k-1)^q >;
%o A174126 [T(n,k,2): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Feb 10 2021
%Y A174126 Cf. A000108, A037966.
%Y A174126 Cf. A155865 (q=1), this sequence (q=2), A174127 (q=3).
%K A174126 nonn,tabl,easy
%O A174126 0,8
%A A174126 _Roger L. Bagula_, Mar 09 2010
%E A174126 Edited by _G. C. Greubel_, Feb 10 2021