This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A174127 #6 Feb 11 2021 02:46:12 %S A174127 1,1,1,1,1,1,1,8,8,1,1,27,216,27,1,1,64,1728,1728,64,1,1,125,8000, %T A174127 27000,8000,125,1,1,216,27000,216000,216000,27000,216,1,1,343,74088, %U A174127 1157625,2744000,1157625,74088,343,1,1,512,175616,4741632,21952000,21952000,4741632,175616,512,1 %N A174127 Triangle T(n, k) = (n-k)^3 * binomial(n-1, k-1)^3 with T(n, 0) = T(n, n) = 1, read by rows. %C A174127 This triangle sequence is part of a class of triangles defined by T(n, k, q) = (n-k)^q * binomial(n-1, k-1)^q with T(n, 0) = T(n, n) = 1 and have row sums Sum_{k=0..n} T(n, k, q) = 2 - [n=0] + Sum_{k=1..n-1} k^q * binomial(n-1, k)^q. - _G. C. Greubel_, Feb 11 2021 %H A174127 G. C. Greubel, <a href="/A174127/b174127.txt">Rows n = 0..100 of the triangle, flattened</a> %F A174127 Let c(n) = Product_{i=2..n} (i-1)^3 for n > 2 otherwise 1. The number triangle is given by T(n, k) = c(n)/(c(k)*c(n-k)). %F A174127 From _G. C. Greubel_, Feb 11 2021: (Start) %F A174127 T(n, k) = (n-k)^3 * binomial(n-1, k-1)^3 with T(n, 0) = T(n, n) = 1. %F A174127 Sum_{k=0..n} T(n, k) = 2 + (n-1)^3*A000172(n-2) - [n=0]. (End) %e A174127 Triangle begins as: %e A174127 1; %e A174127 1, 1; %e A174127 1, 1, 1; %e A174127 1, 8, 8, 1; %e A174127 1, 27, 216, 27, 1; %e A174127 1, 64, 1728, 1728, 64, 1; %e A174127 1, 125, 8000, 27000, 8000, 125, 1; %e A174127 1, 216, 27000, 216000, 216000, 27000, 216, 1; %e A174127 1, 343, 74088, 1157625, 2744000, 1157625, 74088, 343, 1; %e A174127 1, 512, 175616, 4741632, 21952000, 21952000, 4741632, 175616, 512, 1; %t A174127 (* First program *) %t A174127 c[n_]:= If[n<2, 1, Product[(i-1)^3, {i,2,n}]]; %t A174127 T[n_, k_]:= c[n]/(c[k]*c[n-k]); %t A174127 Table[T[n, k], {n,0,12}, {k,0,n}]//Flatten %t A174127 (* Second program *) %t A174127 T[n_, k_, q_]:= If[k==0 || k==n, 1, (n-k)^q*Binomial[n-1, k-1]^q]; %t A174127 Table[T[n,k,3], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Feb 10 2021 *) %o A174127 (Sage) %o A174127 def T(n,k,q): return 1 if (k==0 or k==n) else (n-k)^q*binomial(n-1,k-1)^q %o A174127 flatten([[T(n,k,3) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Feb 11 2021 %o A174127 (Magma) %o A174127 T:= func< n,k,q | k eq 0 or k eq n select 1 else (n-k)^q*Binomial(n-1,k-1)^q >; %o A174127 [T(n,k,3): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Feb 11 2021 %Y A174127 Cf. A155865 (q=1), A174126 (q=2), this sequence (q=3). %Y A174127 Cf. A000172. %K A174127 nonn,tabl,easy %O A174127 0,8 %A A174127 _Roger L. Bagula_, Mar 09 2010 %E A174127 Edited by _G. C. Greubel_, Feb 11 2021