cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A356118 Row sums of A174159.

Original entry on oeis.org

1, 1, 2, 7, 34, 198, 1308, 9651, 79210, 720898, 7240804, 79774814, 957795188, 12453298700, 174353907960, 2615339041155, 41845544418330, 711374726547210, 12804746933817300, 243290199050400810, 4865804009789159580, 102181884318952612980, 2248001455463732796360
Offset: 0

Views

Author

Peter Luschny, Jul 27 2022

Keywords

Crossrefs

Cf. A174159.

Programs

  • Mathematica
    a[n_] := Sum[A174159[n, k], {k, 0, n}]; Table[a[n], {n, 0, 22}]

A356113 Triangle read by rows. T(n, k) = A355776(n, k) + A355777(n, k). Refining A174159, the Euler minus Narayana/Catalan triangle.

Original entry on oeis.org

1, 1, 1, 1, 1, 5, 1, 1, 10, 6, 16, 1, 1, 17, 25, 54, 58, 42, 1, 1, 26, 46, 27, 137, 354, 63, 224, 330, 99, 1, 1, 37, 77, 105, 291, 906, 513, 567, 817, 2883, 957, 811, 1466, 219, 1, 1, 50, 120, 188, 108, 548, 2020, 2632, 1508, 1682, 2356, 10116, 5574, 11724, 978, 4184, 18128, 8436, 2722, 5668, 466, 1
Offset: 0

Views

Author

Peter Luschny, Jul 28 2022

Keywords

Examples

			Triangle T(n, k) begins:
[0] 1;
[1] 1;
[2] 1,   1;
[3] 1,   5,  1;
[4] 1, [10,  6],  16,   1;
[5] 1, [17, 25], [54,  58], 42,  1;
[6] 1, [26, 46,  27], [137, 354, 63], [224, 330],   99,   1;
[7] 1, [37, 77, 105], [291, 906, 513, 567], [817, 2883, 957],[811, 1466], 219, 1;
		

Crossrefs

Cf. A355776, A355777, A356118 (row sums), A174159 (reduced triangle).

Programs

  • SageMath
    for n in range(8):
        print([n], [A355776(n, k) + A355777(n, k)
            for k in range(number_of_partitions(n))])
Showing 1-2 of 2 results.