This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A174171 #39 Nov 11 2021 16:58:49 %S A174171 1,1,4,8,25,65,197,571,1753,5351,16746,52626,167547,536559,1732272, %T A174171 5622960,18357211,60205319,198323708,655787680,2176141555,7244106347, %U A174171 24185285341,80960692691,271685400443,913784117809,3079889039230 %N A174171 A generalized Chebyshev transform of the Motzkin numbers A001006. %C A174171 Hankel transform is the (1,8) Somos-4 sequence A097495(n+2). %H A174171 Paul Barry, <a href="http://arxiv.org/abs/1107.5490">Invariant number triangles, eigentriangles and Somos-4 sequences</a>, arXiv preprint arXiv:1107.5490 [math.CO], 2011. %H A174171 Paul Barry, <a href="https://arxiv.org/abs/1910.00875">Generalized Catalan recurrences, Riordan arrays, elliptic curves, and orthogonal polynomials</a>, arXiv:1910.00875 [math.CO], 2019. %F A174171 G.f.: (1-x-2*x^2-sqrt(1-2*x-7*x^2+4*x^3+4*x^4))/(2*x^2) = (1/(1-2*x))*M(x/(1-2*x^2)), M(x) the g.f. of A010006. %F A174171 a(n) = Sum_{k=0..floor(n/2)} binomial(n-k, k) * 2^k * A001006(n-2k). %F A174171 Conjecture: (n+2)*a(n) -(2*n+1)*a(n-1) +7*(1-n)*a(n-2) +2*(2*n-5)*a(n-3) +4*(n-4)*a(n-4)=0. - _R. J. Mathar_, Sep 30 2012 %F A174171 a(0) = a(1) = 1; a(n) = a(n-1) + 2 * a(n-2) + Sum_{k=0..n-2} a(k) * a(n-k-2). - _Ilya Gutkovskiy_, Nov 09 2021 %F A174171 a(n) ~ 17^(1/4) * (3 + sqrt(17))^(n+1) / (sqrt(Pi) * n^(3/2) * 2^(n+2)). - _Vaclav Kotesovec_, Nov 11 2021 %t A174171 Table[Sum[Binomial[n - k, k] 2^k * Hypergeometric2F1[(1 - #)/2, -#/2, 2, 4] &[n - 2 k], {k, 0, Floor[n/2]}], {n, 0, 26}] (* _Michael De Vlieger_, Feb 02 2017, after _Peter Luschny_ at A001006 *) %Y A174171 Cf. A001006. %K A174171 easy,nonn %O A174171 0,3 %A A174171 _Paul Barry_, Mar 10 2010