A174227 Expansion of -(10*x + sqrt((1-10*x)*(1-14*x)))/(2*x).
1, 1, 12, 145, 1764, 21602, 266232, 3301349, 41178660, 516512462, 6513158376, 82542517386, 1051024082472, 13442267711940, 172638285341040, 2225824753934445, 28802104070304420, 373966734921011990
Offset: 0
Programs
-
Maple
with(LREtools): with(FormalPowerSeries): # requires Maple 2022 ogf:= -(10*x + sqrt((1-10*x)*(1-14*x)))/(2*x): req:= FindRE(ogf,x,u(n)); init:= [1, 1, 12, 145]: iseq:= seq(u(i-1)=init[i],i=1..nops(init)): rmin:= subs(n=n-2, MinimalRecurrence(req,u(n),{iseq})[1]); # Mathar's recurrence a:= gfun:-rectoproc({rmin, iseq}, u(n), remember): seq(a(n),n=0..17); # Georg Fischer, Nov 03 2022 # Alternative, using function FindSeq from A174403: ogf := -(10*x + sqrt((1-10*x)*(1-14*x)))/(2*x): a := FindSeq(ogf): seq(a(n), n=0..17); # Peter Luschny, Nov 04 2022
Formula
a(n) = sqrt(5/7) * 10^n * (6*hypergeom([1/2, n+1],[1],2/7)-7*hypergeom([1/2, n],[1],2/7)) / (n+1) for n > 0. - Mark van Hoeij, Jul 02 2010
D-finite with recurrence: (n+1)*a(n) +12*(1-2*n)*a(n-1) +140*(n-2)*a(n-2)=0. - R. J. Mathar, Sep 30 2012
Extensions
Definiton corrected by Peter Luschny, Nov 05 2022
Comments