cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A174435 lambda(y)/x, where y an odd squarefree semiprime and x = ord(2,y) the smallest positive integer such that 2^x == 1 mod y (the multiplicative order of 2 mod y).

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 2, 2, 3, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 3, 2, 4, 2, 1, 1, 1, 1, 1, 1, 1, 4, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2, 1, 4, 3, 1, 2, 1, 1, 9, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 5, 1, 3, 3, 1, 2, 1, 2, 2, 1, 1, 8, 1, 1, 1, 6
Offset: 1

Views

Author

Vassilis Papadimitriou, Mar 19 2010

Keywords

Examples

			For n=1 the a(1)= 1, as the first odd squarefree semiprime is 15, lambda(15)=4 and ord(2,15)=4
		

Crossrefs

Programs

  • Mathematica
    (CarmichaelLambda[#]/MultiplicativeOrder[2, #]) & /@ Select[Range[1, 530, 2], PrimeOmega[#] == 2 && PrimeNu[#] == 2 &] (* Amiram Eldar, Feb 24 2021 *)

Formula

Equals lambda(A046388)/ord(2, A046388), or lambda(A046388)/A174240.
a(n) = A002322(A046388(n))/A002326((A046388(n)+1)/2). - Amiram Eldar, Feb 24 2021
Showing 1-1 of 1 results.