This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A174278 #7 Mar 26 2022 02:43:43 %S A174278 1,3,13,87,817,9819,143029,2442783,47817913,1054997475,25895101885, %T A174278 699790692519,20644163034049,660099532324971,22739373410768581, %U A174278 839552217608213295,33071685749731393225,1384473468760664408307 %N A174278 Partial sums of A004123. %C A174278 Partial sums of the number of generalized weak orders on n points. Equivalently, partial sums of the number of bipartitional relations on a set of cardinality n. %H A174278 G. C. Greubel, <a href="/A174278/b174278.txt">Table of n, a(n) for n = 1..390</a> %F A174278 a(n) = Sum_{i=1..n} A004123(i). %F A174278 a(n) = Sum_{i=1..n} Sum_{k >= 0} (k^n*(2/3)^k)/3. %F A174278 a(n) = Sum_{i=1..n} Sum_{k = 0..n} Stirling2(n,k)*(2^k)*k!. %t A174278 A004123[n_]:= A004123[n]= Sum[2^k*k!*StirlingS2[n-1,k], {k,0,n-1}]; %t A174278 A174278[n_]:= Sum[A004123[j], {j,0,n}]; %t A174278 Table[A174278[n], {n,30}] (* _G. C. Greubel_, Mar 25 2022 *) %o A174278 (Sage) %o A174278 def A004123(n): return sum(stirling_number2(n-1, k)*(2^k)*factorial(k) for k in (0..n-1)) %o A174278 def A174278(n): return sum(A004123(j) for j in (0..n)) %o A174278 [A174278(n) for n in (1..30)] # _G. C. Greubel_, Mar 25 2022 %Y A174278 Cf. A004123. %K A174278 easy,nonn %O A174278 1,2 %A A174278 _Jonathan Vos Post_, Mar 15 2010