This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A174294 #6 Nov 26 2021 06:08:09 %S A174294 1,1,1,1,0,1,1,1,0,1,1,0,0,0,1,1,1,1,-1,0,1,1,0,0,2,-2,0,1,1,1,0,0,3, %T A174294 -3,0,1,1,0,1,-2,1,4,-4,0,1,1,1,0,3,-6,3,5,-5,0,1,1,0,0,0,6,-12,6,6, %U A174294 -6,0,1,1,1,1,-3,3,9,-20,10,7,-7,0,1,1,0,0,4,-12,12,11,-30,15,8,-8,0,1 %N A174294 Triangle T(n,k), read by rows, T(n,k) = (T(n-1,k-1) + T(n-2,k-1)) - (T(n-1,k) + T(n-2,k)), with T(n, 0) = T(n, k) = 1 and T(n, 1) = (n mod 2). %H A174294 G. C. Greubel, <a href="/A174294/b174294.txt">Rows n = 0..50 of the triangle, flattened</a> %F A174294 T(n,k) = (T(n-1,k-1) + T(n-2,k-1)) - (T(n-1,k) + T(n-2,k)), with T(n, 0) = T(n, k) = 1 and T(n, 1) = (n mod 2). %e A174294 Table begins: %e A174294 n\k|...0...1...2...3...4...5...6...7...8...9..10 %e A174294 ---|-------------------------------------------- %e A174294 0..|...1 %e A174294 1..|...1...1 %e A174294 2..|...1...0...1 %e A174294 3..|...1...1...0...1 %e A174294 4..|...1...0...0...0...1 %e A174294 5..|...1...1...1..-1...0...1 %e A174294 6..|...1...0...0...2..-2...0...1 %e A174294 7..|...1...1...0...0...3..-3...0...1 %e A174294 8..|...1...0...1..-2...1...4..-4...0...1 %e A174294 9..|...1...1...0...3..-6...3...5..-5...0...1 %e A174294 10.|...1...0...0...0...6.-12...6...6..-6...0...1 %t A174294 T[n_, k_]:= T[n, k]= If[k<0 || k>n, 0, If[k==0 || k==n, 1, If[k==1, Mod[n, 2], T[n-1, k-1] +T[n-2, k-1] -T[n-1, k] -T[n-2, k] ]]]; %t A174294 Table[T[n, k], {n,0,15}, {k,0,n}]//Flatten (* _G. C. Greubel_, Nov 25 2021 *) %o A174294 (Sage) %o A174294 @CachedFunction %o A174294 def T(n,k): # A174294 %o A174294 if (k<0 or k>n): return 0 %o A174294 elif (k==0 or k==n): return 1 %o A174294 elif (k==1): return n%2 %o A174294 else: return T(n-1, k-1) + T(n-2, k-1) - T(n-1, k) - T(n-2, k) %o A174294 flatten([[T(n,k) for k in (0..n)] for n in (0..15)]) # _G. C. Greubel_, Nov 25 2021 %Y A174294 Cf. A112467, A112468, A174294, A174295, A174296, A174297. %K A174294 sign,tabl %O A174294 0,25 %A A174294 _Mats Granvik_, Mar 15 2010