This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A174301 #8 Sep 08 2022 08:45:51 %S A174301 1,1,1,1,8,1,1,12,12,1,1,16,96,16,1,1,20,160,160,20,1,1,24,240,1280, %T A174301 240,24,1,1,28,336,2240,2240,336,28,1,1,32,448,3584,17920,3584,448,32, %U A174301 1,1,36,576,5376,32256,32256,5376,576,36,1,1,40,720,7680,53760,258048,53760,7680,720,40,1 %N A174301 A symmetrical triangle: T(n,k) = binomial(n, k)*if(floor(n/2) greater than or equal to k then 4^k, otherwise 4^(n-k)). %C A174301 Row sums are: {1, 2, 10, 26, 130, 362, 1810, 5210, 26050, 76490, ...}. %H A174301 G. C. Greubel, <a href="/A174301/b174301.txt">Rows n = 0..100 of triangle, flattened</a> %F A174301 T(n, m) = binomial(n, m)*if(floor(n/2) greater than or equal to m then 4^m, otherwise 4^(n-m)). %e A174301 Triangle begins: %e A174301 1; %e A174301 1, 1; %e A174301 1, 8, 1; %e A174301 1, 12, 12, 1; %e A174301 1, 16, 96, 16, 1; %e A174301 1, 20, 160, 160, 20, 1; %e A174301 1, 24, 240, 1280, 240, 24, 1; %e A174301 1, 28, 336, 2240, 2240, 336, 28, 1; %e A174301 1, 32, 448, 3584, 17920, 3584, 448, 32, 1; %e A174301 1, 36, 576, 5376, 32256, 32256, 5376, 576, 36, 1; %e A174301 1, 40, 720, 7680, 53760, 258048, 53760, 7680, 720, 40, 1; %t A174301 Table[Binomial[n, m]*If[Floor[n/2]>=m , 4^m, 4^(n-m)], {n,0,10}, {m,0,n} ]//Flatten %o A174301 (PARI) {T(n,k) = binomial(n,k)*if(floor(n/2)>=k, 4^k, 4^(n-k))}; \\ _G. C. Greubel_, Apr 15 2019 %o A174301 (Magma) [[Floor(n/2) ge k select 4^k*Binomial(n,k) else 4^(n-k)*Binomial(n,k): k in [0..n]]: n in [0..10]]; // _G. C. Greubel_, Apr 15 2019 %o A174301 (Sage) %o A174301 def T(n,k): %o A174301 if floor(n/2)>=k: return 4^k*binomial(n,k) %o A174301 else: return 4^(n-k)*binomial(n,k) %o A174301 [[T(n,k) for k in (0..n)] for n in (0..10)] # _G. C. Greubel_, Apr 15 2019 %Y A174301 Cf. A144463, A144470. %Y A174301 T(2n,n) gives A098430. %K A174301 nonn,tabl %O A174301 0,5 %A A174301 _Roger L. Bagula_, Mar 15 2010 %E A174301 Edited by _G. C. Greubel_, Apr 15 2019