This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A174322 #21 Jun 11 2021 05:39:33 %S A174322 6,10,106,1003,10001,100001,1000001,10000001,100000001,1000000006, %T A174322 10000000003,100000000007,1000000000007,10000000000015, %U A174322 100000000000013,1000000000000003,10000000000000003,100000000000000015,1000000000000000007,10000000000000000001 %N A174322 a(n) is the smallest n-digit number with exactly 4 divisors. %C A174322 a(n) = the smallest n-digit number of the form p^3 or p^1*q^1, (p, q = distinct primes). %H A174322 Michael S. Branicky, <a href="/A174322/b174322.txt">Table of n, a(n) for n = 1..70</a> %F A174322 A000005(a(n)) = 4. %t A174322 Table[k=10^(n-1); While[DivisorSigma[0, k] != 4, k++]; k, {n, 10}] %o A174322 (Python) %o A174322 from sympy import divisors %o A174322 def a(n): %o A174322 k = 10**(n-1) %o A174322 while len(divisors(k)) != 4: k += 1 %o A174322 return k %o A174322 print([a(n) for n in range(1, 21)]) # _Michael S. Branicky_, Jun 10 2021 %o A174322 (Python) # faster alternative for larger terms %o A174322 from sympy import divisors %o A174322 def a(n): %o A174322 k = 10**(n-1) - 1 %o A174322 divs = -1 %o A174322 while divs != 4: %o A174322 k += 1 %o A174322 divs = 0 %o A174322 for d in divisors(k, generator=True): %o A174322 divs += 1 %o A174322 if divs > 4: break %o A174322 return k %o A174322 print([a(n) for n in range(1, 22)]) # _Michael S. Branicky_, Jun 10 2021 %Y A174322 Subsequence of A030513. %Y A174322 Cf. A182648 (largest n-digit numbers with exactly 4 divisors). %K A174322 nonn,base %O A174322 1,1 %A A174322 _Jaroslav Krizek_, Nov 27 2010