This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A174323 #36 May 07 2025 12:20:30 %S A174323 1,2,3,4,5,6,7,11,13,17,20,23,24,27,28,29,32,43,47,52,55,74,77,80,83, %T A174323 84,85,87,88,91,93,96,97,100,108,115,123,131,132,137,138,143,146,149, %U A174323 156,157,161,163,178,184,187,189,196,197,209,211,214,215,221,222,223,232 %N A174323 Numbers n such that omega(Fibonacci(n)) is a square. %C A174323 Numbers n such that omega(A000045(n)) is a square, where omega(p) is the number of distinct prime factors of p (A001221). Remark: for the larger Fibonacci numbers F(n) (n > 300), the Maple program (below) is very slow. So we use a two-step process: factoring F(n) with the elliptic curve method, and then calculate the distinct prime factors. %D A174323 Majorie Bicknell and Verner E Hoggatt, Fibonacci's Problem Book, Fibonacci Association, San Jose, Calif., 1974. %D A174323 Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, The Fibonacci Association, 1972, pages 1-8. %H A174323 Amiram Eldar, <a href="/A174323/b174323.txt">Table of n, a(n) for n = 1..258</a> (terms 1..200 from Robert Israel, derived from b-file for A022307) %H A174323 Blair Kelly, <a href="http://mersennus.net/fibonacci//">Fibonacci and Lucas Factorizations</a> %H A174323 Pieter Moree, <a href="http://msp.org/pjm/1998/186-2/p03.xhtml">Counting Divisors of Lucas Numbers</a>, Pacific J. Math, Vol. 186, No. 2, 1998, pp. 267-284. %H A174323 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FibonacciNumber.html">Fibonacci Number</a> %H A174323 Wikipedia, <a href="http://en.wikipedia.org/wiki/Fibonacci_number">Fibonacci number</a> %e A174323 omega(Fibonacci(1)) = omega(Fibonacci(2)) = omega(1) = 0, %e A174323 omega(Fibonacci(3)) = omega(2) = 1, %e A174323 omega(Fibonacci(20)) = omega(6765) = 4, %e A174323 omega(Fibonacci(80)) = omega(23416728348467685) = 9. %p A174323 with(numtheory):u0:=0:u1:=1:for p from 2 to 400 do :s:=u0+u1:u0:=u1:u1:=s: s1:=nops( ifactors(s)[2]): w1:=sqrt(s1):w2:=floor(w1):if w1=w2 then print (p): else fi:od: %p A174323 # alternative: %p A174323 P[1]:= {}: count:= 1: res:= 1: %p A174323 for i from 2 to 300 do %p A174323 pn:= map(t -> i/t, numtheory:-factorset(i)); %p A174323 Cprimes:= `union`(seq(P[t],t=pn)); %p A174323 f:= combinat:-fibonacci(i); %p A174323 for p in Cprimes do f:= f/p^padic:-ordp(f,p) od; %p A174323 P[i]:= Cprimes union numtheory:-factorset(f); %p A174323 if issqr(nops(P[i])) then %p A174323 count:= count+1; %p A174323 res:= res, i; %p A174323 fi; %p A174323 od: %p A174323 res; # _Robert Israel_, Oct 13 2016 %t A174323 Select[Range[200], IntegerQ[Sqrt[PrimeNu[Fibonacci[#]]]] &] (* _G. C. Greubel_, May 16 2017 *) %o A174323 (PARI) is(n)=issquare(omega(fibonacci(n))) \\ _Charles R Greathouse IV_, Oct 13 2016 %o A174323 (Magma) [k:k in [1..240]| IsSquare(#PrimeDivisors(Fibonacci(k)))]; // _Marius A. Burtea_, Oct 15 2019 %Y A174323 Cf. A038575 (number of prime factors of n-th Fibonacci number, with multiplicity). %Y A174323 Cf. A000045, A000213, A000288, A000322, A000383, A001221, A060455, A030186, A039834, A020695, A020701, A071679. %Y A174323 Cf. A022307 (number of distinct prime factors of n-th Fibonacci number), A086597 (number of primitive prime factors). %K A174323 nonn %O A174323 1,2 %A A174323 _Michel Lagneau_, Mar 15 2010