cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174335 Upper bound in enumerating what majority decisions are possible with possible abstaining.

This page as a plain text file.
%I A174335 #11 Feb 25 2016 16:53:12
%S A174335 0,16,256,2592,24576,240000,2488320,27659520,330301440,4232632320,
%T A174335 58060800000,850068172800,13243436236800,218892235161600,
%U A174335 3827475696844800,70614415872000000,1371195958099968000
%N A174335 Upper bound in enumerating what majority decisions are possible with possible abstaining.
%C A174335 a(n) from last equations, Larson, p.22.
%D A174335 J. A. N. d. Condorcet. Essai sur l'application de l'analyse à la probabilité des décisions rendues à la pluralité des voix. L'imprimerie royale, Paris, 1785.
%H A174335 P. Erdos and L. Moser, <a href="https://www.renyi.hu/~p_erdos/1964-22.pdf">On the representation of directed graphs as unions of orderings</a>, Magyar Tud. Akad. Mat. Kutats Int. Kvzl., 9:125-132, 1964.
%H A174335 Paul Larson, Nick Matteo, Saharon Shelah, <a href="http://arxiv.org/abs/1003.2756">What majority decisions are possible with possible abstaining</a>, arXiv:1003.2756 [math.CO], 2010.
%H A174335 S. Shelah, <a href="http://dx.doi.org/10.1016/j.disc.2008.05.010">What majority decisions are possible</a>, Discrete Mathematics, 309(8): 2349-2364, 2009.
%F A174335 a(n) = 16*(n^3)*(n!) = 16*A000578(n)*A000142(n).
%F A174335 a(n) = 16*A091363(n). - _Michel Marcus_, Jun 25 2015
%e A174335 a(4) = 16*(4^3)*(4!) = 24576.
%t A174335 Table[16n^3 n!,{n,0,20}] (* _Harvey P. Dale_, Feb 25 2016 *)
%o A174335 (PARI) a(n) = 16*n^3*n! \\ _Michel Marcus_, Jun 25 2015
%Y A174335 Cf. A000142, A000578, A091363.
%K A174335 easy,nonn
%O A174335 0,2
%A A174335 _Jonathan Vos Post_, Mar 16 2010