cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174341 a(n) = Numerator of Bernoulli(n, 1) + 1/(n+1).

This page as a plain text file.
%I A174341 #64 Jun 26 2025 14:04:15
%S A174341 2,1,1,1,1,1,1,1,7,1,1,1,-37,1,37,1,-211,1,2311,1,-407389,1,37153,1,
%T A174341 -1181819909,1,76977929,1,-818946931,1,277930363757,1,-84802531453217,
%U A174341 1,90219075042851,1,-711223555487930419,1,12696640293313423,1,-6367871182840222481,1,35351107998094669831,1,-83499808737903072705023,1,12690449182849194963361,1
%N A174341 a(n) = Numerator of Bernoulli(n, 1) + 1/(n+1).
%C A174341 a(n) is numerator of (A164555(n)/A027642(n) + 1/(n+1)).
%C A174341 1/(n+1) and Bernoulli(n,1) are autosequences in the sense that they remain the same (up to sign) under inverse binomial transform. This feature is kept for their sum, a(n)/A174342(n) = 2, 1, 1/2, 1/4, 1/6, 1/6, 1/6, 1/8, 7/90, 1/10, ...
%C A174341 Similar autosequences are also A000045, A001045, A113405, A000975 preceded by two zeros, and A140096.
%C A174341 Conjecture: the numerator of (A164555(n)/(n+1) + A027642(n)/(n+1)^2) is a(n) and the denominator of this fraction is equal to 1 if and only if n+1 is prime or 1. Cf. A309132. - _Thomas Ordowski_, Jul 09 2019
%C A174341 The "if" part of the conjecture is true: see the theorems in A309132 and A326690. The values of the numerator when n+1 is prime are A327033. - _Jonathan Sondow_, Aug 15 2019
%H A174341 Vincenzo Librandi, <a href="/A174341/b174341.txt">Table of n, a(n) for n = 0..300</a>
%H A174341 OEIS Wiki, <a href="https://oeis.org/wiki/Autosequence">Autosequence</a>
%p A174341 A174341 := proc(n) bernoulli(n,1)+1/(n+1); numer(%) end proc: # _R. J. Mathar_, Nov 19 2010
%t A174341 a[n_] := Numerator[BernoulliB[n, 1] + 1/(n + 1)];
%t A174341 Table[a[n], {n, 0, 47}] (* _Peter Luschny_, Jul 13 2019 *)
%o A174341 (PARI)
%o A174341 B(n)=if(n!=1, bernfrac(n), -bernfrac(n));
%o A174341 a(n)=numerator(B(n) + 1/(n + 1));
%o A174341 for(n=0, 50, print1(a(n),", ")) \\ _Indranil Ghosh_, Jun 19 2017
%o A174341 (PARI) a(n)=numerator(bernpol(n, 1) + 1/(n + 1)); \\ _Michel Marcus_, Jun 26 2025
%o A174341 (Python)
%o A174341 from sympy import bernoulli, Integer
%o A174341 def a(n): return (bernoulli(n) + 1/Integer(n + 1)).numerator # _Indranil Ghosh_, Jun 19 2017
%o A174341 (Magma) [2,1] cat [Numerator(Bernoulli(n)+1/(n+1)): n in [2..40]]; // _Vincenzo Librandi_, Jul 18 2019
%Y A174341 Cf. A164555, A027642, A174342 (denominators), A025529, A003506, A309132, A326690, A327033.
%K A174341 sign,frac
%O A174341 0,1
%A A174341 _Paul Curtz_, Mar 16 2010
%E A174341 Reformulation of the name by _Peter Luschny_, Jul 13 2019