cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174350 Square array: row n >= 1 lists the primes p for which the next prime is p+2n; read by antidiagonals.

This page as a plain text file.
%I A174350 #52 Sep 22 2022 08:13:27
%S A174350 3,5,7,11,13,23,17,19,31,89,29,37,47,359,139,41,43,53,389,181,199,59,
%T A174350 67,61,401,241,211,113,71,79,73,449,283,467,293,1831,101,97,83,479,
%U A174350 337,509,317,1933,523,107,103,131,491,409,619,773,2113,1069,887
%N A174350 Square array: row n >= 1 lists the primes p for which the next prime is p+2n; read by antidiagonals.
%C A174350 Every odd prime p = prime(i), i > 1, occurs in this array, in row (prime(i+1) - prime(i))/2. Polignac's conjecture states that each row contains an infinite number of indices. In case this does not hold, we can use the convention to continue finite rows with 0's, to ensure the sequence is well defined. - _M. F. Hasler_, Oct 19 2018
%C A174350 A permutation of the odd primes (A065091). - _Robert G. Wilson v_, Sep 13 2022
%H A174350 Robert G. Wilson v, <a href="/A174350/b174350.txt">Falling antidiagonals 1..115, flattened</a> (first 50 from T. D. Noe).
%H A174350 Fred B. Holt and Helgi Rudd, <a href="http://arxiv.org/abs/1402.1970">On Polignac's Conjecture</a>, arxiv:1402.1970 [math.NT], 2014.
%F A174350 a(n) = A000040(A174349(n)). - _Michel Marcus_, Mar 30 2016
%e A174350 Upper left hand corner of the array:
%e A174350      3     5    11    17    29    41    59    71   101 ...
%e A174350      7    13    19    37    43    67    79    97   103 ...
%e A174350     23    31    47    53    61    73    83   131   151 ...
%e A174350     89   359   389   401   449   479   491   683   701 ...
%e A174350    139   181   241   283   337   409   421   547   577 ...
%e A174350    199   211   467   509   619   661   797   997  1201 ...
%e A174350    113   293   317   773   839   863   953  1409  1583 ...
%e A174350   1831  1933  2113  2221  2251  2593  2803  3121  3373 ...
%e A174350    523  1069  1259  1381  1759  1913  2161  2503  2861 ...
%e A174350   (...)
%e A174350 Row 1: p(2) = 3, p(3) = 5, p(5) = 11, p(7) = 17,... these being the primes for which the next prime is 2 greater: (lesser of) twin primes A001359.
%e A174350 Row 2: p(4) = 7, p(6) = 13, p(8) = 19,... these being the primes for which the next prime is 4 greater: (lesser of) cousin primes A029710.
%t A174350 rows = 10; t2 = {}; Do[t = {}; p = Prime[2]; While[Length[t] < rows - off + 1, nextP = NextPrime[p]; If[nextP - p == 2*off, AppendTo[t, p]]; p = nextP]; AppendTo[t2, t], {off, rows}]; Table[t2[[b, a - b + 1]], {a, rows}, {b, a}] (* _T. D. Noe_, Feb 11 2014 *)
%t A174350 t[r_, 0] = 2; t[r_, c_] := Block[{p = NextPrime@ t[r, c - 1], q}, q = NextPrime@ p; While[ p + 2r != q, p = q; q = NextPrime@ q]; p]; Table[ t[r - c + 1, c], {r, 10}, {c, r, 1, -1}] (* _Robert G. Wilson v_, Nov 06 2020 *)
%o A174350 (PARI) A174350_row(g, N=50, i=0, p=prime(i+1), L=[])={g*=2; forprime(q=1+p, , i++; if(p+g==p=q, L=concat(L, q-g); N--||return(L)))} \\ Returns the first N terms of row g. - _M. F. Hasler_, Oct 19 2018
%Y A174350 Cf. A000040, A001223, A065091, A174349.
%Y A174350 Rows 1, 2, 3, ...: A001359, A029710, A031924, A031926, A031928 (row 5), A031930, A031932, A031934, A031936, A031938 (row 10), A061779, A098974, A124594, A124595, A124596 (row 15), A126784, A134116, A134117, A134118, A126721 (row 20), A134120, A134121, A134122, A134123, A134124 (row 25), A204665, A204666, A204667, A204668, A126771 (row 30), A204669, A204670.
%Y A174350 Rows 35, 40, 45, 50, ...: A204792, A126722, A204764, A050434 (row 50), A204801, A204672, A204802, A204803, A126724 (row 75), A184984, A204805, A204673, A204806, A204807 (row 100); A224472 (row 150).
%Y A174350 Column 1: A000230.
%Y A174350 Column 2: A046789.
%K A174350 nonn,tabl
%O A174350 1,1
%A A174350 _Clark Kimberling_, Mar 16 2010
%E A174350 Definition corrected and other edits by _M. F. Hasler_, Oct 19 2018