This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A174370 #20 May 12 2022 15:06:43 %S A174370 71,191,6551,9767,18119,21647,27527,35447,46271,79631,103391,103967, %T A174370 121367,127679,161639,207671,241559,254927,264959,273311,380327, %U A174370 421079,450599,479879,592367,700127,745751,949607,986567,1011599,1013399 %N A174370 Lesser member p of a twin prime pair (p, p + 2) such that 2p + 3(p + 2) is a perfect square. %C A174370 2p + 3(p + 2) = 5p + 6. %C A174370 There are two parametric solutions for natural numbers: %C A174370 (a) p = 5t^2 + 2t - 1, k = 5t + 1, necessarily for a prime p: t = 2s => p = 20s^2 + 4s - 1, k = 10s + 1. %C A174370 If s = 3k + 2 => p of (a) is not prime but a multiple of 3. %C A174370 If the least significant digit of k is 1, solution of (a) for s = (k - 1)/10). %C A174370 (b) p = 5t^2 + 8t + 2, k = 5t + 4, necessarily for a prime p: t = 2s - 1 => p = 20s^2 - 4s - 1, N = 10s-1. %C A174370 If s = 3k + 1 => p of (b) is not prime but a multiple of 3. %C A174370 If the least significant digit of k is 9, solution of (b) for s = (k + 1)/10). %D A174370 Leonard E. Dickson, History of the Theory of numbers, vol. 2: Diophantine Analysis, Dover Publications 2005. %D A174370 Richard K. Guy, Unsolved Problems in Number Theory, New York, Springer-Verlag, 1994. %D A174370 Edmund Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Band I, B. G. Teubner, Leipzig u. Berlin, 1909. %H A174370 Amiram Eldar, <a href="/A174370/b174370.txt">Table of n, a(n) for n = 1..10000</a> %H A174370 E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, <a href="http://name.umdl.umich.edu/ABV2766.0001.001">vol. 1</a> and <a href="http://name.umdl.umich.edu/ABV2766.0002.001">vol. 2</a>, Leipzig, Berlin, B. G. Teubner, 1909. %e A174370 71 and 73 are twin primes, 2 * 71 + 3 * 73 = 19^2. %e A174370 191 and 193 are twin primes, 2 * 191 + 3 * 193 = 31^2. %t A174370 Select[Prime[Range[10^5]], PrimeQ[# + 2] && IntegerQ[Sqrt[2# + 3(# + 2)]] &] (* _Alonso del Arte_, Dec 05 2011 *) %t A174370 Select[(Range[2251]^2 - 6)/5, And @@ PrimeQ[# + {0, 2}] &] (* _Amiram Eldar_, Dec 24 2019 *) %t A174370 Select[Partition[Prime[Range[80000]],2,1],#[[2]]-#[[1]]==2&&IntegerQ[Sqrt[ 2#[[1]]+ 3#[[2]]]]&][[All,1]] (* _Harvey P. Dale_, May 12 2022 *) %o A174370 (PARI) forstep(n=1,1e4,[10,8,10,2],if(isprime(p=n^2\5-1)&&isprime(p+2),print1(p", "))) \\ _Charles R Greathouse IV_, Dec 05 2011 %Y A174370 Cf. A001359, A061308, A069496, A119859, A172271, A172494, A173255. %K A174370 nonn %O A174370 1,1 %A A174370 Ulrich Krug (leuchtfeuer37(AT)gmx.de), Mar 17 2010