cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174375 a(n) = n^2 - XOR(n^2, n).

This page as a plain text file.
%I A174375 #41 Dec 23 2024 14:53:42
%S A174375 0,1,-2,-1,-4,-3,2,-5,-8,-7,-10,7,-12,5,-6,-13,-16,-15,-18,-17,12,13,
%T A174375 -14,11,-24,9,-26,23,4,-11,-22,-29,-32,-31,-34,-33,-36,-35,34,27,-40,
%U A174375 -39,22,39,-44,37,-38,19,-48,17,-50,15,-20,45,18,-21,-56,41,6,-9,-28
%N A174375 a(n) = n^2 - XOR(n^2, n).
%C A174375 Plotting the points of a(n) versus n up to a power of 2 approximates a Sierpinski gasket.
%C A174375 It follows from a(x + 2^k) = a(x) + 2^k (mod 2^(k+1)) that a is a bijection modulo 2^k for all k, as observed by Erling Ellingsen. Therefore, a is injective. Is it a bijection when considered as a function from Z to Z? - _David Radcliffe_, May 06 2023
%H A174375 Reinhard Zumkeller, <a href="/A174375/b174375.txt">Table of n, a(n) for n = 0..8192</a>
%H A174375 Fred Lunnon, <a href="https://web.archive.org/web/*/http://list.seqfan.eu/pipermail/seqfan/2023-May/074652.html">Sketch of argument that sequence is a permutation of Z</a>, SeqFan mailing list, May 30 2023.
%F A174375 a(n) = n^2 - XOR(n^2, n), where XOR is bitwise.
%t A174375 Table[n^2-BitXor[n^2,n],{n,0,60}] (* _Harvey P. Dale_, Jun 30 2011 *)
%o A174375 (Haskell)
%o A174375 a174375 n = n ^ 2 - a169810 n  -- _Reinhard Zumkeller_, Dec 27 2012
%o A174375 (PARI) a(n)=n^2 - bitxor(n^2,n) \\ _Charles R Greathouse IV_, Sep 27 2016
%o A174375 (Python) def a(n): return n * n - ((n * n) ^ n) # _David Radcliffe_, May 06 2023
%Y A174375 Cf. A169810.
%K A174375 sign,nice,look
%O A174375 0,3
%A A174375 _Carl R. White_, Mar 17 2010