cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174403 Expansion of (1-2*x-2*x^2-sqrt(1-4*x-4*x^2+8*x^3+4*x^4))/(2*x^2).

Original entry on oeis.org

1, 2, 7, 22, 76, 268, 977, 3638, 13804, 53164, 207342, 817212, 3250104, 13026744, 52567461, 213394854, 870845260, 3570590668, 14701822370, 60765209876, 252021314536, 1048538259304, 4375013741962, 18302920281148, 76756814078840, 322618359099896, 1358831330368732
Offset: 0

Views

Author

Paul Barry, Mar 18 2010

Keywords

Comments

G.f. A(x) satisfies A(x)=1+2x*A(x)+2x^2*A(x)+x^2*A(x)^2. Hankel transform is A174404.

Programs

  • Maple
    with(LREtools): with(FormalPowerSeries): # requires Maple 2022
    ogf:= (1-2*x-2*x^2-sqrt(1-4*x-4*x^2+8*x^3+4*x^4))/(2*x^2):
    req:= FindRE(ogf,x,u(n));
    init:= [1, 2, 7, 22, 76, 268]; iseq:= seq(u(i-1)=init[i],i=1..nops(init)):
    rmin:= subs(n=n-4,MinimalRecurrence(req,u(n),{iseq})[1]); # Mathar's recurrence
    a:= gfun:-rectoproc({rmin, iseq}, u(n), remember):
    seq(a(n),n=0..24); # Georg Fischer, Nov 04 2022
    with(gfun): # Alternative with gfun alone (use gfun:-version() >= 3.91):
    FindSeq := proc(ogf) series(ogf, x, 26): [seq(coeff(%, x, n), n = 0..22)];
    listtorec(%, r(n))[1]; subs(n=n-nops(%)-1, %); rectoproc(%, r(n), remember) end:
    ogf := (1-sqrt((2*x^2-1)*(2*x*(x+2)-1))-2*x*(x+1))/(2*x^2):
    a := FindSeq(ogf): seq(a(n), n=0..28); # Peter Luschny, Nov 04 2022
  • Mathematica
    nmax = 24;
    A[_] = 1;
    Do[A[x_] = 1 + 2*x*A[x] + 2*x^2*A[x] + x^2*A[x]^2 + O[x]^(nmax+1) // Normal, {nmax}];
    CoefficientList[A[x], x] (* Jean-François Alcover, Aug 02 2023 *)

Formula

G.f.: 1/(1-2x-2x^2-x^2/(1-2x-2x^2-x^2/(1-... (continued fraction).
Let A(x) be the g.f., then B(x)=1+x*A(x) = 1 +1*x +2*x^2 +7*x^3 +22*x^4 +... = 1/(1-z/(1-z/(1-z/(...)))) where z=x/(1-2*x^2) (continued fraction); more generally B(x)=C(x/(1-2*x^2)) where C(x) is the g.f. for the Catalan numbers (A000108). [Joerg Arndt, Mar 18 2011]
D-finite with recurrence: (n+2)*a(n) -2*(2*n+1)*a(n-1) +4*(1-n)*a(n-2) +4*(2*n-5)*a(n-3) +4*(n-4)*a(n-4)=0. - R. J. Mathar, Sep 30 2012
a(n) ~ 6^(1/4) * (2 + sqrt(6))^(n+1) / (sqrt(2*Pi) * n^(3/2)). - Vaclav Kotesovec, Aug 15 2018