cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174408 Primes of the form A174335(i)-1 or A174335(i)+1.

This page as a plain text file.
%I A174408 #10 Aug 05 2018 12:01:31
%S A174408 17,257,2591,2593,239999,2488319,27659519,27659521,330301441,
%T A174408 4232632319,58060799999,13243436236801,70614415872000001,
%U A174408 3429209878281350809286344704000001,1665505492033205854772229590583093971095149084672000000001
%N A174408 Primes of the form A174335(i)-1 or A174335(i)+1.
%F A174408 a(n) = {A000040(i)} INTERSECTION ({16*(j^3)*(j!) - 1} UNION {16*(k^3)*(k!) - 1}).
%e A174408 a(1)  =                17 = 16 *  1^3 *  1! + 1 is prime.
%e A174408 a(2)  =               257 = 16 *  2^3 *  2! + 1 is prime.
%e A174408 a(3)  =              2591 = 16 *  3^3 *  3! - 1 is prime.
%e A174408 a(4)  =              2593 = 16 *  3^3 *  3! + 1 is prime.
%e A174408 a(5)  =            239999 = 16 *  5^3 *  5! - 1 is prime.
%e A174408 a(6)  =           2488319 = 16 *  6^3 *  6! - 1 is prime.
%e A174408 a(7)  =          27659519 = 16 *  7^3 *  7! - 1 is prime.
%e A174408 a(8)  =          27659521 = 16 *  7^3 *  7! + 1 is prime.
%e A174408 a(9)  =         330301441 = 16 *  8^3 *  8! + 1 is prime.
%e A174408 a(10) =        4232632319 = 16 *  9^3 *  9! - 1 is prime.
%e A174408 a(11) =       58060799999 = 16 * 10^3 * 10! - 1 is prime.
%e A174408 a(12) =    13243436236801 = 16 * 12^3 * 12! + 1 is prime.
%e A174408 a(13) = 70614415872000001 = 16 * 15^3 * 15! + 1 is prime.
%p A174408 A174335 := proc(n) 16*n^3*n! ; end proc: for i from 1 to 60 do a := A174335(i) ; if isprime(a-1) then printf("%d,",a-1) ; end if; if isprime(a+1) then printf("%d,",a+1) ; end if; end do: # _R. J. Mathar_, Apr 15 2010
%Y A174408 Cf. A000040, A000142, A000578, A174335.
%K A174408 easy,nonn
%O A174408 1,1
%A A174408 _Jonathan Vos Post_, Mar 19 2010
%E A174408 One more term from _R. J. Mathar_, Apr 15 2010