This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A174408 #10 Aug 05 2018 12:01:31 %S A174408 17,257,2591,2593,239999,2488319,27659519,27659521,330301441, %T A174408 4232632319,58060799999,13243436236801,70614415872000001, %U A174408 3429209878281350809286344704000001,1665505492033205854772229590583093971095149084672000000001 %N A174408 Primes of the form A174335(i)-1 or A174335(i)+1. %F A174408 a(n) = {A000040(i)} INTERSECTION ({16*(j^3)*(j!) - 1} UNION {16*(k^3)*(k!) - 1}). %e A174408 a(1) = 17 = 16 * 1^3 * 1! + 1 is prime. %e A174408 a(2) = 257 = 16 * 2^3 * 2! + 1 is prime. %e A174408 a(3) = 2591 = 16 * 3^3 * 3! - 1 is prime. %e A174408 a(4) = 2593 = 16 * 3^3 * 3! + 1 is prime. %e A174408 a(5) = 239999 = 16 * 5^3 * 5! - 1 is prime. %e A174408 a(6) = 2488319 = 16 * 6^3 * 6! - 1 is prime. %e A174408 a(7) = 27659519 = 16 * 7^3 * 7! - 1 is prime. %e A174408 a(8) = 27659521 = 16 * 7^3 * 7! + 1 is prime. %e A174408 a(9) = 330301441 = 16 * 8^3 * 8! + 1 is prime. %e A174408 a(10) = 4232632319 = 16 * 9^3 * 9! - 1 is prime. %e A174408 a(11) = 58060799999 = 16 * 10^3 * 10! - 1 is prime. %e A174408 a(12) = 13243436236801 = 16 * 12^3 * 12! + 1 is prime. %e A174408 a(13) = 70614415872000001 = 16 * 15^3 * 15! + 1 is prime. %p A174408 A174335 := proc(n) 16*n^3*n! ; end proc: for i from 1 to 60 do a := A174335(i) ; if isprime(a-1) then printf("%d,",a-1) ; end if; if isprime(a+1) then printf("%d,",a+1) ; end if; end do: # _R. J. Mathar_, Apr 15 2010 %Y A174408 Cf. A000040, A000142, A000578, A174335. %K A174408 easy,nonn %O A174408 1,1 %A A174408 _Jonathan Vos Post_, Mar 19 2010 %E A174408 One more term from _R. J. Mathar_, Apr 15 2010