cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174420 Let A(n) = floor((3/2)^n), B(n)=3^n-2^n*A(n); then a(n)=2^n-A(n)-B(n)-2.

Original entry on oeis.org

-2, -2, -1, 0, 8, 4, 26, 98, 68, 245, 284, 941, 908, 2921, 866, 3038, 9773, 95842, 26864, 82811, 776048, 235984, 715436, 2157533, 14878043, 27882168, 16575521, 116892244, 82326503, 515542801, 1009949246, 882651721, 500902958, 1503356036, 4511038850, 13534572662, 40605902153, 53101505973, 21870478820, 65618808017
Offset: 0

Views

Author

N. J. A. Sloane, Nov 27 2010

Keywords

Comments

Related to Waring's problem.
a(n) is conjectured to be >= 0 for all n >= 3. If this were proved it would settle Waring's problem (see A002804). It is known that a(n) >= 0 for 3 <= n <= 471600000.
If we rewrite the formula as (2^n-1)*ceiling((3/2)^n) - 3^n - 1, we see more clearly a comparison between 3^n and the product of an undervaluation of 2^n and an overvaluation of (3/2)^n. If the undervaluation is proportionately smaller than the ceiling overvaluation, a(n) is nonnegative. 2^n grows faster than (3/2)^n, so for a negative value to occur the target difference between (3/2)^n and ceiling((3/2)^n) gets smaller as n gets larger, and the sum of these target differences (for n > 0) is finite. - Peter Munn, Dec 08 2022

References

  • G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers. 3rd ed., Oxford Univ. Press, 1954, p. 337.
  • R. C. Vaughan and T. D. Wooley, Waring's problem: a survey, pp. 285-324 of Surveys in Number Theory (Urbana, May 21, 2000), ed. M. A. Bennett et al., Peters, 2003.

Crossrefs

Cf. A002804.

Programs

  • Mathematica
    a[n_] := Floor[(3/2)^n]; b[n_] := 3^n - 2^n*a[n]; Table[2^n - a[n] - b[n] - 2, {n, 0, 39}] (* Jean-François Alcover, Apr 05 2011 *)
  • Python
    def A174420(n): return ((m:=3**n)&-(k:=1<>n)-2 # Chai Wah Wu, Jun 25 2024