This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A174422 #23 Dec 29 2014 18:37:19 %S A174422 1093,11,2,5,71,2,2,3,13,2,7,2,2,5 %N A174422 1st Wieferich prime base prime(n). %C A174422 Smallest prime p such that p^2 divides prime(n)^(p-1) - 1. %C A174422 Smallest prime p such that p divides the Fermat quotient q_p((prime(n)) = (prime(n)^(p-1) - 1)/p. %C A174422 See additional comments, links, and cross-refs in A039951. %C A174422 a(15) = A039951(47) > 4.1*10^13. %H A174422 Wikipedia, <a href="http://en.wikipedia.org/wiki/Fermat_quotient#Generalized_Wieferich_primes"> Generalized Wieferich primes</a>. %H A174422 Robert G. Wilson v, <a href="/A174422/a174422.txt">Table of n, a(n) for n = 1..10000 (or 0 if unknown)</a> %F A174422 a(n) = A039951(prime(n)). %F A174422 a(n) = 2 if and only if prime(n) == 1 (mod 4). [_Jonathan Sondow_, Aug 29 2010] %e A174422 a(1) = 1093 is the first Wieferich prime A001220. a(2) = 11 is the first Mirimanoff prime A014127. %t A174422 f[n_] := Block[{b = Prime@ n, p = 2}, While[ PowerMod[b, p - 1, p^2] != 1, p = NextPrime@ p]; p]; Array[f, 14] %o A174422 (PARI) forprime(a=2, 20, forprime(p=2, 10^9, if(Mod(a, p^2)^(p-1)==1, print1(p, ", "); next({2}))); print1("--, ")) \\ _Felix Fröhlich_, Jun 27 2014 %Y A174422 Cf. A001220, A014127, A039951 = smallest prime p such that p^2 divides n^(p-1) - 1, A125636 = smallest prime p such that prime(n)^2 divides p^(prime(n)-1) - 1. %Y A174422 Cf. A178871 = 2nd Wieferich prime base prime(n). %K A174422 hard,more,nonn %O A174422 1,1 %A A174422 _Jonathan Sondow_, Mar 19 2010