cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174455 Number of partitions where the number of 1's and 2's are equal.

This page as a plain text file.
%I A174455 #49 Aug 13 2025 22:48:16
%S A174455 1,0,0,2,1,1,4,3,4,8,8,10,17,18,23,34,39,48,67,78,97,127,151,185,237,
%T A174455 281,343,428,511,616,759,902,1084,1315,1562,1863,2242,2649,3147,3752,
%U A174455 4424,5222,6190,7266,8545,10062,11776,13782,16157,18832,21964,25622,29777,34589,40200,46556,53912
%N A174455 Number of partitions where the number of 1's and 2's are equal.
%C A174455 From _Omar E. Pol_, Jan 19 2013: (Start)
%C A174455 Column 3 of triangle A220504.
%C A174455 With offset 3, a(n) is also the number of appearances of 3 as the smallest part in all partitions of n.
%C A174455 Also consider the sequence formed by [0, 0] together with this sequence, with offset 1, then it appears that A027336(n) = Sum_{j=1..3} a(n+j), n >= 0.
%C A174455 (End)
%H A174455 Seiichi Manyama, <a href="/A174455/b174455.txt">Table of n, a(n) for n = 0..10000</a> (terms 0..1000 from Alois P. Heinz)
%F A174455 G.f.: 1/( (1-x^3) * Product_{n>=3} (1-x^n) ). - _Joerg Arndt_, Jul 07 2012
%F A174455 a(n) = A182713(n+2) - A182713(n) = A240056(n+1) - A240056(n) for n >= 0. - _Clark Kimberling_, Mar 31 2014
%F A174455 a(n) ~ Pi * exp(sqrt(2*n/3)*Pi) / (9 * 2^(3/2) * n^(3/2)). - _Vaclav Kotesovec_, Jan 15 2022
%e A174455 a(8)=9, there are 8 such partitions of 9, they are
%e A174455   #1:    9 =  3* 1 + 3* 2 + 0    + 0    + 0    + 0    + 0    + 0    + 0
%e A174455   #2:    9 =  2* 1 + 2* 2 + 1* 3 + 0    + 0    + 0    + 0    + 0    + 0
%e A174455   #3:    9 =  1* 1 + 1* 2 + 2* 3 + 0    + 0    + 0    + 0    + 0    + 0
%e A174455   #4:    9 =  0    + 0    + 3* 3 + 0    + 0    + 0    + 0    + 0    + 0
%e A174455   #5:    9 =  0    + 0    + 0    + 1* 4 + 1* 5 + 0    + 0    + 0    + 0
%e A174455   #6:    9 =  1* 1 + 1* 2 + 0    + 0    + 0    + 1* 6 + 0    + 0    + 0
%e A174455   #7:    9 =  0    + 0    + 1* 3 + 0    + 0    + 1* 6 + 0    + 0    + 0
%e A174455   #8:    9 =  0    + 0    + 0    + 0    + 0    + 0    + 0    + 0    + 1* 9
%p A174455 b:= proc(n, i) option remember; local j, r; if n=0 or i<1 then 0
%p A174455       else `if`(i=3 and irem(n, 3, 'r')=0, r, 0); for j from 0
%p A174455       to n/i do %+b(n-i*j, i-1) od; % fi
%p A174455     end:
%p A174455 a:= n-> b(n+3, n+3):
%p A174455 seq(a(n), n=0..60);  # _Alois P. Heinz_, Jan 20 2013
%t A174455 (* See A240056. - _Clark Kimberling_, Mar 31 2014 *)
%t A174455 m = 66; gf = 1/((1-x^3)*Product[1-x^n, {n, 3, m}]) + O[x]^m; CoefficientList[gf, x] (* _Jean-François Alcover_, Jul 02 2015, after _Joerg Arndt_ *)
%o A174455 (PARI)
%o A174455 N=66;  x='x+O('x^N);
%o A174455 gf=1/( (1-x^3) * prod(n=3,N, 1-x^n) );
%o A174455 Vec(gf)
%o A174455 /* _Joerg Arndt_, Jul 07 2012 */
%Y A174455 Cf. A008483, A182713, A240056.
%K A174455 nonn
%O A174455 0,4
%A A174455 _Joerg Arndt_, Nov 28 2010