cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A174460 Smith numbers of order 2.

Original entry on oeis.org

56, 58, 810, 822, 1075, 1519, 1752, 2145, 2227, 2260, 2483, 2618, 2620, 3078, 3576, 3653, 3962, 4336, 4823, 4974, 5216, 5242, 5386, 5636, 5719, 5762, 5935, 5998, 6220, 6424, 6622, 6845, 7015, 7251, 7339, 7705, 7756, 8460, 9254, 9303, 9355, 10481, 10626, 10659
Offset: 1

Views

Author

Paul Weisenhorn, Dec 20 2010

Keywords

Comments

Composite numbers a(n) such that the sum of digits^2 equals the sum of digits^2 of its prime factors without the numbers of A176670 that have the same digits as its prime factors (without the zero digit).
It seems as though as the order n approaches infinity, the sequence of n-order Smith numbers approaches A176670. Is there a value of n where the only n-order Smith numbers are members of A176670? - Ely Golden, Dec 07 2016

Examples

			a(2) = 58 = 2*29 is a Smith number of order 2 because 5^2 + 8^2 = 2^2 + 2^2 + 9^2 = 89.
		

Crossrefs

Cf. A006753 (Smith numbers), A176670, A178213, A178193, A178203, A178204.

Programs

  • Maple
    for s from 2 to 10000 do g:=nops(ifactors(s)[2]): qsp:=0: for u from 1 to g do z:=ifactors(s)[2,u][1]: h:=0: while (z>0) do z:=iquo(z,10,'r'): h:=h+r^2: end do: h:=h*ifactors(s)[2,u][2]: qsp:=qsp+h: end do: z:=s: qs:=0: while (z>0) do z:=iquo(z,10,'r'): qs:=qs+r^2: end do: if (qsp=qs) then print(s): end if: end do:
  • Mathematica
    With[{k = 2},Select[Range[12000], Function[n, And[Total@ Map[#^k &, IntegerDigits@ n] == Total@ Map[#^k &, Flatten@ IntegerDigits[#]], Not[Sort@ DeleteCases[#, 0] &@ IntegerDigits@ n == Sort@ DeleteCases[#, 0] &@ #]] &@ Flatten@ Map[IntegerDigits@ ConstantArray[#1, #2] & @@ # &, FactorInteger@ n]]]] (* Michael De Vlieger, Dec 10 2016 *)